Exploring Video-Based Driver Activity Recognition under Noisy Labels
- URL: http://arxiv.org/abs/2504.11966v1
- Date: Wed, 16 Apr 2025 10:55:13 GMT
- Title: Exploring Video-Based Driver Activity Recognition under Noisy Labels
- Authors: Linjuan Fan, Di Wen, Kunyu Peng, Kailun Yang, Jiaming Zhang, Ruiping Liu, Yufan Chen, Junwei Zheng, Jiamin Wu, Xudong Han, Rainer Stiefelhagen,
- Abstract summary: Real-world video data often contains mislabeled samples, impacting model reliability and performance.<n>We propose the first label noise learning approach for the driver activity recognition task.<n>A comprehensive variety of experiments on the public Drive&Act dataset for all levels demonstrates the superior performance of our method.
- Score: 37.804676222671
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As an open research topic in the field of deep learning, learning with noisy labels has attracted much attention and grown rapidly over the past ten years. Learning with label noise is crucial for driver distraction behavior recognition, as real-world video data often contains mislabeled samples, impacting model reliability and performance. However, label noise learning is barely explored in the driver activity recognition field. In this paper, we propose the first label noise learning approach for the driver activity recognition task. Based on the cluster assumption, we initially enable the model to learn clustering-friendly low-dimensional representations from given videos and assign the resultant embeddings into clusters. We subsequently perform co-refinement within each cluster to smooth the classifier outputs. Furthermore, we propose a flexible sample selection strategy that combines two selection criteria without relying on any hyperparameters to filter clean samples from the training dataset. We also incorporate a self-adaptive parameter into the sample selection process to enforce balancing across classes. A comprehensive variety of experiments on the public Drive&Act dataset for all granularity levels demonstrates the superior performance of our method in comparison with other label-denoising methods derived from the image classification field. The source code is available at https://github.com/ilonafan/DAR-noisy-labels.
Related papers
- Enhancing Sample Utilization in Noise-Robust Deep Metric Learning With Subgroup-Based Positive-Pair Selection [84.78475642696137]
The existence of noisy labels in real-world data negatively impacts the performance of deep learning models.<n>We propose a noise-robust DML framework with SubGroup-based Positive-pair Selection (SGPS)<n>SGPS constructs reliable positive pairs for noisy samples to enhance the sample utilization.
arXiv Detail & Related papers (2025-01-19T14:41:55Z) - Learning with Open-world Noisy Data via Class-independent Margin in Dual Representation Space [25.472718931422307]
We propose a novel dual-space joint learning method to robustly handle the open-world noise.<n>Our method achieves an average accuracy improvement of 4.55% and an AUROC improvement of 6.17% on CIFAR80N.
arXiv Detail & Related papers (2025-01-19T14:09:04Z) - Extracting Clean and Balanced Subset for Noisy Long-tailed Classification [66.47809135771698]
We develop a novel pseudo labeling method using class prototypes from the perspective of distribution matching.
By setting a manually-specific probability measure, we can reduce the side-effects of noisy and long-tailed data simultaneously.
Our method can extract this class-balanced subset with clean labels, which brings effective performance gains for long-tailed classification with label noise.
arXiv Detail & Related papers (2024-04-10T07:34:37Z) - Combating Label Noise With A General Surrogate Model For Sample Selection [77.45468386115306]
We propose to leverage the vision-language surrogate model CLIP to filter noisy samples automatically.<n>We validate the effectiveness of our proposed method on both real-world and synthetic noisy datasets.
arXiv Detail & Related papers (2023-10-16T14:43:27Z) - Channel-Wise Contrastive Learning for Learning with Noisy Labels [60.46434734808148]
We introduce channel-wise contrastive learning (CWCL) to distinguish authentic label information from noise.
Unlike conventional instance-wise contrastive learning (IWCL), CWCL tends to yield more nuanced and resilient features aligned with the authentic labels.
Our strategy is twofold: firstly, using CWCL to extract pertinent features to identify cleanly labeled samples, and secondly, progressively fine-tuning using these samples.
arXiv Detail & Related papers (2023-08-14T06:04:50Z) - Deep Active Learning in the Presence of Label Noise: A Survey [1.8945921149936182]
Deep active learning has emerged as a powerful tool for training deep learning models within a predefined labeling budget.
We discuss the current state of deep active learning in the presence of label noise, highlighting unique approaches, their strengths, and weaknesses.
We propose exploring contrastive learning methods to derive good image representations that can aid in selecting high-value samples for labeling.
arXiv Detail & Related papers (2023-02-22T00:27:39Z) - Learning to Detect Noisy Labels Using Model-Based Features [16.681748918518075]
We propose Selection-Enhanced Noisy label Training (SENT)
SENT does not rely on meta learning while having the flexibility of being data-driven.
It improves performance over strong baselines under the settings of self-training and label corruption.
arXiv Detail & Related papers (2022-12-28T10:12:13Z) - S3: Supervised Self-supervised Learning under Label Noise [53.02249460567745]
In this paper we address the problem of classification in the presence of label noise.
In the heart of our method is a sample selection mechanism that relies on the consistency between the annotated label of a sample and the distribution of the labels in its neighborhood in the feature space.
Our method significantly surpasses previous methods on both CIFARCIFAR100 with artificial noise and real-world noisy datasets such as WebVision and ANIMAL-10N.
arXiv Detail & Related papers (2021-11-22T15:49:20Z) - Attention-Aware Noisy Label Learning for Image Classification [97.26664962498887]
Deep convolutional neural networks (CNNs) learned on large-scale labeled samples have achieved remarkable progress in computer vision.
The cheapest way to obtain a large body of labeled visual data is to crawl from websites with user-supplied labels, such as Flickr.
This paper proposes the attention-aware noisy label learning approach to improve the discriminative capability of the network trained on datasets with potential label noise.
arXiv Detail & Related papers (2020-09-30T15:45:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.