RADLER: Radar Object Detection Leveraging Semantic 3D City Models and Self-Supervised Radar-Image Learning
- URL: http://arxiv.org/abs/2504.12167v1
- Date: Wed, 16 Apr 2025 15:18:56 GMT
- Title: RADLER: Radar Object Detection Leveraging Semantic 3D City Models and Self-Supervised Radar-Image Learning
- Authors: Yuan Luo, Rudolf Hoffmann, Yan Xia, Olaf Wysocki, Benedikt Schwab, Thomas H. Kolbe, Daniel Cremers,
- Abstract summary: We first introduce a unique dataset, RadarCity, comprising 54K synchronized radar-image pairs and semantic 3D city models.<n>We propose a novel neural network, RADLER, leveraging the effectiveness of contrastive self-supervised learning (SSL) and semantic 3D city models.<n>We extensively evaluate RADLER on the collected RadarCity dataset and demonstrate average improvements of 5.46% in mean avarage precision (mAP) and 3.51% in mean avarage recall (mAR) over previous radar object detection methods.
- Score: 37.577145092561715
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semantic 3D city models are worldwide easy-accessible, providing accurate, object-oriented, and semantic-rich 3D priors. To date, their potential to mitigate the noise impact on radar object detection remains under-explored. In this paper, we first introduce a unique dataset, RadarCity, comprising 54K synchronized radar-image pairs and semantic 3D city models. Moreover, we propose a novel neural network, RADLER, leveraging the effectiveness of contrastive self-supervised learning (SSL) and semantic 3D city models to enhance radar object detection of pedestrians, cyclists, and cars. Specifically, we first obtain the robust radar features via a SSL network in the radar-image pretext task. We then use a simple yet effective feature fusion strategy to incorporate semantic-depth features from semantic 3D city models. Having prior 3D information as guidance, RADLER obtains more fine-grained details to enhance radar object detection. We extensively evaluate RADLER on the collected RadarCity dataset and demonstrate average improvements of 5.46% in mean avarage precision (mAP) and 3.51% in mean avarage recall (mAR) over previous radar object detection methods. We believe this work will foster further research on semantic-guided and map-supported radar object detection. Our project page is publicly available athttps://gpp-communication.github.io/RADLER .
Related papers
- RobuRCDet: Enhancing Robustness of Radar-Camera Fusion in Bird's Eye View for 3D Object Detection [68.99784784185019]
Poor lighting or adverse weather conditions degrade camera performance.<n>Radar suffers from noise and positional ambiguity.<n>We propose RobuRCDet, a robust object detection model in BEV.
arXiv Detail & Related papers (2025-02-18T17:17:38Z) - TransRAD: Retentive Vision Transformer for Enhanced Radar Object Detection [6.163747364795787]
We present TransRAD, a novel 3D radar object detection model.<n>We propose Location-Aware NMS to mitigate the common issue of duplicate bounding boxes in deep radar object detection.<n>Results demonstrate that TransRAD outperforms state-of-the-art methods in both 2D and 3D radar detection tasks.
arXiv Detail & Related papers (2025-01-29T20:21:41Z) - RadarOcc: Robust 3D Occupancy Prediction with 4D Imaging Radar [15.776076554141687]
3D occupancy-based perception pipeline has significantly advanced autonomous driving.
Current methods rely on LiDAR or camera inputs for 3D occupancy prediction.
We introduce a novel approach that utilizes 4D imaging radar sensors for 3D occupancy prediction.
arXiv Detail & Related papers (2024-05-22T21:48:17Z) - Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
We introduce Radar Fields - a neural scene reconstruction method designed for active radar imagers.
Our approach unites an explicit, physics-informed sensor model with an implicit neural geometry and reflectance model to directly synthesize raw radar measurements.
We validate the effectiveness of the method across diverse outdoor scenarios, including urban scenes with dense vehicles and infrastructure.
arXiv Detail & Related papers (2024-05-07T20:44:48Z) - CenterRadarNet: Joint 3D Object Detection and Tracking Framework using
4D FMCW Radar [28.640714690346353]
CenterRadarNet is designed to facilitate high-resolution representation learning from 4D (Doppler-range-azimuth-ele) radar data.
As a single-stage 3D object detector, CenterRadarNet infers the BEV object distribution confidence maps, corresponding 3D bounding box attributes, and appearance embedding for each pixel.
In diverse driving scenarios, CenterRadarNet shows consistent, robust performance, emphasizing its wide applicability.
arXiv Detail & Related papers (2023-11-02T17:36:40Z) - Reviewing 3D Object Detectors in the Context of High-Resolution 3+1D
Radar [0.7279730418361995]
High-resolution imaging 4D (3+1D) radar sensors have deep learning-based radar perception research.
We investigate deep learning-based models operating on radar point clouds for 3D object detection.
arXiv Detail & Related papers (2023-08-10T10:10:43Z) - Bi-LRFusion: Bi-Directional LiDAR-Radar Fusion for 3D Dynamic Object
Detection [78.59426158981108]
We introduce a bi-directional LiDAR-Radar fusion framework, termed Bi-LRFusion, to tackle the challenges and improve 3D detection for dynamic objects.
We conduct extensive experiments on nuScenes and ORR datasets, and show that our Bi-LRFusion achieves state-of-the-art performance for detecting dynamic objects.
arXiv Detail & Related papers (2023-06-02T10:57:41Z) - R4Dyn: Exploring Radar for Self-Supervised Monocular Depth Estimation of
Dynamic Scenes [69.6715406227469]
Self-supervised monocular depth estimation in driving scenarios has achieved comparable performance to supervised approaches.
We present R4Dyn, a novel set of techniques to use cost-efficient radar data on top of a self-supervised depth estimation framework.
arXiv Detail & Related papers (2021-08-10T17:57:03Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
We tackle the problem of exploiting Radar for perception in the context of self-driving cars.
We propose a new solution that exploits both LiDAR and Radar sensors for perception.
Our approach, dubbed RadarNet, features a voxel-based early fusion and an attention-based late fusion.
arXiv Detail & Related papers (2020-07-28T17:15:02Z) - Deep Learning on Radar Centric 3D Object Detection [4.822598110892847]
We introduce a deep learning approach to 3D object detection with radar only.
To overcome the lack of radar labeled data, we propose a novel way of making use of abundant LiDAR data.
arXiv Detail & Related papers (2020-02-27T10:16:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.