Deep Learning on Radar Centric 3D Object Detection
- URL: http://arxiv.org/abs/2003.00851v1
- Date: Thu, 27 Feb 2020 10:16:46 GMT
- Title: Deep Learning on Radar Centric 3D Object Detection
- Authors: Seungjun Lee
- Abstract summary: We introduce a deep learning approach to 3D object detection with radar only.
To overcome the lack of radar labeled data, we propose a novel way of making use of abundant LiDAR data.
- Score: 4.822598110892847
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Even though many existing 3D object detection algorithms rely mostly on
camera and LiDAR, camera and LiDAR are prone to be affected by harsh weather
and lighting conditions. On the other hand, radar is resistant to such
conditions. However, research has found only recently to apply deep neural
networks on radar data. In this paper, we introduce a deep learning approach to
3D object detection with radar only. To the best of our knowledge, we are the
first ones to demonstrate a deep learning-based 3D object detection model with
radar only that was trained on the public radar dataset. To overcome the lack
of radar labeled data, we propose a novel way of making use of abundant LiDAR
data by transforming it into radar-like point cloud data and aggressive radar
augmentation techniques.
Related papers
- RadarPillars: Efficient Object Detection from 4D Radar Point Clouds [42.9356088038035]
We present RadarPillars, a pillar-based object detection network.
By decomposing radial velocity data, RadarPillars significantly outperform state-of-the-art detection results on the View-of-Delft dataset.
This comes at a significantly reduced parameter count, surpassing existing methods in terms of efficiency and enabling real-time performance on edge devices.
arXiv Detail & Related papers (2024-08-09T12:13:38Z) - Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
We introduce Radar Fields - a neural scene reconstruction method designed for active radar imagers.
Our approach unites an explicit, physics-informed sensor model with an implicit neural geometry and reflectance model to directly synthesize raw radar measurements.
We validate the effectiveness of the method across diverse outdoor scenarios, including urban scenes with dense vehicles and infrastructure.
arXiv Detail & Related papers (2024-05-07T20:44:48Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
We propose a novel method named EchoFusion to skip the existing radar signal processing pipeline.
Specifically, we first generate the Bird's Eye View (BEV) queries and then take corresponding spectrum features from radar to fuse with other sensors.
arXiv Detail & Related papers (2023-07-31T09:53:50Z) - Bi-LRFusion: Bi-Directional LiDAR-Radar Fusion for 3D Dynamic Object
Detection [78.59426158981108]
We introduce a bi-directional LiDAR-Radar fusion framework, termed Bi-LRFusion, to tackle the challenges and improve 3D detection for dynamic objects.
We conduct extensive experiments on nuScenes and ORR datasets, and show that our Bi-LRFusion achieves state-of-the-art performance for detecting dynamic objects.
arXiv Detail & Related papers (2023-06-02T10:57:41Z) - RadarFormer: Lightweight and Accurate Real-Time Radar Object Detection
Model [13.214257841152033]
Radar-centric data sets do not get a lot of attention in the development of deep learning techniques for radar perception.
We propose a transformers-based model, named RadarFormer, that utilizes state-of-the-art developments in vision deep learning.
Our model also introduces a channel-chirp-time merging module that reduces the size and complexity of our models by more than 10 times without compromising accuracy.
arXiv Detail & Related papers (2023-04-17T17:07:35Z) - K-Radar: 4D Radar Object Detection for Autonomous Driving in Various
Weather Conditions [9.705678194028895]
KAIST-Radar is a novel large-scale object detection dataset and benchmark.
It contains 35K frames of 4D Radar tensor (4DRT) data with power measurements along the Doppler, range, azimuth, and elevation dimensions.
We provide auxiliary measurements from carefully calibrated high-resolution Lidars, surround stereo cameras, and RTK-GPS.
arXiv Detail & Related papers (2022-06-16T13:39:21Z) - LiRaNet: End-to-End Trajectory Prediction using Spatio-Temporal Radar
Fusion [52.59664614744447]
We present LiRaNet, a novel end-to-end trajectory prediction method which utilizes radar sensor information along with widely used lidar and high definition (HD) maps.
automotive radar provides rich, complementary information, allowing for longer range vehicle detection as well as instantaneous velocity measurements.
arXiv Detail & Related papers (2020-10-02T00:13:00Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
We tackle the problem of exploiting Radar for perception in the context of self-driving cars.
We propose a new solution that exploits both LiDAR and Radar sensors for perception.
Our approach, dubbed RadarNet, features a voxel-based early fusion and an attention-based late fusion.
arXiv Detail & Related papers (2020-07-28T17:15:02Z) - Probabilistic Oriented Object Detection in Automotive Radar [8.281391209717103]
We propose a deep-learning based algorithm for radar object detection.
We created a new multimodal dataset with 102544 frames of raw radar and synchronized LiDAR data.
Our best performing radar detection model achieves 77.28% AP under oriented IoU of 0.3.
arXiv Detail & Related papers (2020-04-11T05:29:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.