Beyond Patches: Mining Interpretable Part-Prototypes for Explainable AI
- URL: http://arxiv.org/abs/2504.12197v1
- Date: Wed, 16 Apr 2025 15:48:21 GMT
- Title: Beyond Patches: Mining Interpretable Part-Prototypes for Explainable AI
- Authors: Mahdi Alehdaghi, Rajarshi Bhattacharya, Pourya Shamsolmoali, Rafael M. O. Cruz, Maguelonne Heritier, Eric Granger,
- Abstract summary: Part-prototypical concept mining network (PCMNet) is proposed to learn interpretable prototypes from meaningful regions.<n>PCMNet clusters prototypes into concept groups, creating semantically grounded explanations without requiring additional annotations.<n>Our experiments show that PCMNet can provide a high level of interpretability, stability, and robustness under clean and occluded scenarios.
- Score: 10.687381287384524
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning has provided considerable advancements for multimedia systems, yet the interpretability of deep models remains a challenge. State-of-the-art post-hoc explainability methods, such as GradCAM, provide visual interpretation based on heatmaps but lack conceptual clarity. Prototype-based approaches, like ProtoPNet and PIPNet, offer a more structured explanation but rely on fixed patches, limiting their robustness and semantic consistency. To address these limitations, a part-prototypical concept mining network (PCMNet) is proposed that dynamically learns interpretable prototypes from meaningful regions. PCMNet clusters prototypes into concept groups, creating semantically grounded explanations without requiring additional annotations. Through a joint process of unsupervised part discovery and concept activation vector extraction, PCMNet effectively captures discriminative concepts and makes interpretable classification decisions. Our extensive experiments comparing PCMNet against state-of-the-art methods on multiple datasets show that it can provide a high level of interpretability, stability, and robustness under clean and occluded scenarios.
Related papers
- Interpretable Image Classification via Non-parametric Part Prototype Learning [14.390730075612248]
Classifying images with an interpretable decision-making process is a long-standing problem in computer vision.
In recent years, Prototypical Part Networks has gained traction as an approach for self-explainable neural networks.
We present a framework for part-based interpretable image classification that learns a set of semantically distinctive object parts for each class.
arXiv Detail & Related papers (2025-03-13T10:46:53Z) - Interpretable Prognostics with Concept Bottleneck Models [5.939858158928473]
Concept Bottleneck Models (CBMs) are inherently interpretable neural network architectures based on concept explanations.
CBMs enable domain experts to intervene on the concept activations at test-time.
Our case studies demonstrate that the performance of CBMs can be on par or superior to black-box models.
arXiv Detail & Related papers (2024-05-27T18:15:40Z) - MCPNet: An Interpretable Classifier via Multi-Level Concept Prototypes [24.28807025839685]
We argue that explanations lacking insights into the decision processes of low and mid-level features are neither fully faithful nor useful.
We propose a novel paradigm that learns and aligns multi-level concept prototype distributions for classification purposes via Class-aware Concept Distribution (CCD) loss.
arXiv Detail & Related papers (2024-04-13T11:13:56Z) - Learning Transferable Conceptual Prototypes for Interpretable
Unsupervised Domain Adaptation [79.22678026708134]
In this paper, we propose an inherently interpretable method, named Transferable Prototype Learning ( TCPL)
To achieve this goal, we design a hierarchically prototypical module that transfers categorical basic concepts from the source domain to the target domain and learns domain-shared prototypes for explaining the underlying reasoning process.
Comprehensive experiments show that the proposed method can not only provide effective and intuitive explanations but also outperform previous state-of-the-arts.
arXiv Detail & Related papers (2023-10-12T06:36:41Z) - Concept-Centric Transformers: Enhancing Model Interpretability through
Object-Centric Concept Learning within a Shared Global Workspace [1.6574413179773757]
Concept-Centric Transformers is a simple yet effective configuration of the shared global workspace for interpretability.
We show that our model achieves better classification accuracy than all baselines across all problems.
arXiv Detail & Related papers (2023-05-25T06:37:39Z) - Unsupervised Interpretable Basis Extraction for Concept-Based Visual
Explanations [53.973055975918655]
We show that, intermediate layer representations become more interpretable when transformed to the bases extracted with our method.
We compare the bases extracted with our method with the bases derived with a supervised approach and find that, in one aspect, the proposed unsupervised approach has a strength that constitutes a limitation of the supervised one and give potential directions for future research.
arXiv Detail & Related papers (2023-03-19T00:37:19Z) - Guiding the PLMs with Semantic Anchors as Intermediate Supervision:
Towards Interpretable Semantic Parsing [57.11806632758607]
We propose to incorporate the current pretrained language models with a hierarchical decoder network.
By taking the first-principle structures as the semantic anchors, we propose two novel intermediate supervision tasks.
We conduct intensive experiments on several semantic parsing benchmarks and demonstrate that our approach can consistently outperform the baselines.
arXiv Detail & Related papers (2022-10-04T07:27:29Z) - GlanceNets: Interpretabile, Leak-proof Concept-based Models [23.7625973884849]
Concept-based models (CBMs) combine high-performance and interpretability by acquiring and reasoning with a vocabulary of high-level concepts.
We provide a clear definition of interpretability in terms of alignment between the model's representation and an underlying data generation process.
We introduce GlanceNets, a new CBM that exploits techniques from disentangled representation learning and open-set recognition to achieve alignment.
arXiv Detail & Related papers (2022-05-31T08:53:53Z) - Towards Interpretable Deep Networks for Monocular Depth Estimation [78.84690613778739]
We quantify the interpretability of a deep MDE network by the depth selectivity of its hidden units.
We propose a method to train interpretable MDE deep networks without changing their original architectures.
Experimental results demonstrate that our method is able to enhance the interpretability of deep MDE networks.
arXiv Detail & Related papers (2021-08-11T16:43:45Z) - Attentional Prototype Inference for Few-Shot Segmentation [128.45753577331422]
We propose attentional prototype inference (API), a probabilistic latent variable framework for few-shot segmentation.
We define a global latent variable to represent the prototype of each object category, which we model as a probabilistic distribution.
We conduct extensive experiments on four benchmarks, where our proposal obtains at least competitive and often better performance than state-of-the-art prototype-based methods.
arXiv Detail & Related papers (2021-05-14T06:58:44Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
Prototypical Contrastive Learning (PCL) is an unsupervised representation learning method.
PCL implicitly encodes semantic structures of the data into the learned embedding space.
PCL outperforms state-of-the-art instance-wise contrastive learning methods on multiple benchmarks.
arXiv Detail & Related papers (2020-05-11T09:53:36Z) - Obtaining Faithful Interpretations from Compositional Neural Networks [72.41100663462191]
We evaluate the intermediate outputs of NMNs on NLVR2 and DROP datasets.
We find that the intermediate outputs differ from the expected output, illustrating that the network structure does not provide a faithful explanation of model behaviour.
arXiv Detail & Related papers (2020-05-02T06:50:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.