GlanceNets: Interpretabile, Leak-proof Concept-based Models
- URL: http://arxiv.org/abs/2205.15612v1
- Date: Tue, 31 May 2022 08:53:53 GMT
- Title: GlanceNets: Interpretabile, Leak-proof Concept-based Models
- Authors: Emanuele Marconato, Andrea Passerini, Stefano Teso
- Abstract summary: Concept-based models (CBMs) combine high-performance and interpretability by acquiring and reasoning with a vocabulary of high-level concepts.
We provide a clear definition of interpretability in terms of alignment between the model's representation and an underlying data generation process.
We introduce GlanceNets, a new CBM that exploits techniques from disentangled representation learning and open-set recognition to achieve alignment.
- Score: 23.7625973884849
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is growing interest in concept-based models (CBMs) that combine
high-performance and interpretability by acquiring and reasoning with a
vocabulary of high-level concepts. A key requirement is that the concepts be
interpretable. Existing CBMs tackle this desideratum using a variety of
heuristics based on unclear notions of interpretability, and fail to acquire
concepts with the intended semantics. We address this by providing a clear
definition of interpretability in terms of alignment between the model's
representation and an underlying data generation process, and introduce
GlanceNets, a new CBM that exploits techniques from disentangled representation
learning and open-set recognition to achieve alignment, thus improving the
interpretability of the learned concepts. We show that GlanceNets, paired with
concept-level supervision, achieve better alignment than state-of-the-art
approaches while preventing spurious information from unintendedly leaking into
the learned concepts.
Related papers
- Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
Concept Bottleneck Models (CBMs) have been proposed to address the 'black-box' problem of deep neural networks.
We propose a novel CBM approach -- called Discover-then-Name-CBM (DN-CBM) -- that inverts the typical paradigm.
Our concept extraction strategy is efficient, since it is agnostic to the downstream task, and uses concepts already known to the model.
arXiv Detail & Related papers (2024-07-19T17:50:11Z) - Self-supervised Interpretable Concept-based Models for Text Classification [9.340843984411137]
This paper proposes a self-supervised Interpretable Concept Embedding Models (ICEMs)
We leverage the generalization abilities of Large-Language Models to predict the concepts labels in a self-supervised way.
ICEMs can be trained in a self-supervised way achieving similar performance to fully supervised concept-based models and end-to-end black-box ones.
arXiv Detail & Related papers (2024-06-20T14:04:53Z) - A Concept-Based Explainability Framework for Large Multimodal Models [52.37626977572413]
We propose a dictionary learning based approach, applied to the representation of tokens.
We show that these concepts are well semantically grounded in both vision and text.
We show that the extracted multimodal concepts are useful to interpret representations of test samples.
arXiv Detail & Related papers (2024-06-12T10:48:53Z) - LLM-based Hierarchical Concept Decomposition for Interpretable Fine-Grained Image Classification [5.8754760054410955]
We introduce textttHi-CoDecomposition, a novel framework designed to enhance model interpretability through structured concept analysis.
Our approach not only aligns with the performance of state-of-the-art models but also advances transparency by providing clear insights into the decision-making process.
arXiv Detail & Related papers (2024-05-29T00:36:56Z) - ConcEPT: Concept-Enhanced Pre-Training for Language Models [57.778895980999124]
ConcEPT aims to infuse conceptual knowledge into pre-trained language models.
It exploits external entity concept prediction to predict the concepts of entities mentioned in the pre-training contexts.
Results of experiments show that ConcEPT gains improved conceptual knowledge with concept-enhanced pre-training.
arXiv Detail & Related papers (2024-01-11T05:05:01Z) - Advancing Ante-Hoc Explainable Models through Generative Adversarial Networks [24.45212348373868]
This paper presents a novel concept learning framework for enhancing model interpretability and performance in visual classification tasks.
Our approach appends an unsupervised explanation generator to the primary classifier network and makes use of adversarial training.
This work presents a significant step towards building inherently interpretable deep vision models with task-aligned concept representations.
arXiv Detail & Related papers (2024-01-09T16:16:16Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
Pretrained language models (PLMs) have made significant strides in various natural language processing tasks.
The lack of interpretability due to their black-box'' nature poses challenges for responsible implementation.
We propose a novel approach to interpreting PLMs by employing high-level, meaningful concepts that are easily understandable for humans.
arXiv Detail & Related papers (2023-11-08T20:41:18Z) - Coarse-to-Fine Concept Bottleneck Models [9.910980079138206]
This work targets ante hoc interpretability, and specifically Concept Bottleneck Models (CBMs)
Our goal is to design a framework that admits a highly interpretable decision making process with respect to human understandable concepts, on two levels of granularity.
Within this framework, concept information does not solely rely on the similarity between the whole image and general unstructured concepts; instead, we introduce the notion of concept hierarchy to uncover and exploit more granular concept information residing in patch-specific regions of the image scene.
arXiv Detail & Related papers (2023-10-03T14:57:31Z) - Interpretable Neural-Symbolic Concept Reasoning [7.1904050674791185]
Concept-based models aim to address this issue by learning tasks based on a set of human-understandable concepts.
We propose the Deep Concept Reasoner (DCR), the first interpretable concept-based model that builds upon concept embeddings.
arXiv Detail & Related papers (2023-04-27T09:58:15Z) - Concept Gradient: Concept-based Interpretation Without Linear Assumption [77.96338722483226]
Concept Activation Vector (CAV) relies on learning a linear relation between some latent representation of a given model and concepts.
We proposed Concept Gradient (CG), extending concept-based interpretation beyond linear concept functions.
We demonstrated CG outperforms CAV in both toy examples and real world datasets.
arXiv Detail & Related papers (2022-08-31T17:06:46Z) - Translational Concept Embedding for Generalized Compositional Zero-shot
Learning [73.60639796305415]
Generalized compositional zero-shot learning means to learn composed concepts of attribute-object pairs in a zero-shot fashion.
This paper introduces a new approach, termed translational concept embedding, to solve these two difficulties in a unified framework.
arXiv Detail & Related papers (2021-12-20T21:27:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.