Interpretable Prognostics with Concept Bottleneck Models
- URL: http://arxiv.org/abs/2405.17575v1
- Date: Mon, 27 May 2024 18:15:40 GMT
- Title: Interpretable Prognostics with Concept Bottleneck Models
- Authors: Florent Forest, Katharina Rombach, Olga Fink,
- Abstract summary: Concept Bottleneck Models (CBMs) are inherently interpretable neural network architectures based on concept explanations.
CBMs enable domain experts to intervene on the concept activations at test-time.
Our case studies demonstrate that the performance of CBMs can be on par or superior to black-box models.
- Score: 5.939858158928473
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning approaches have recently been extensively explored for the prognostics of industrial assets. However, they still suffer from a lack of interpretability, which hinders their adoption in safety-critical applications. To improve their trustworthiness, explainable AI (XAI) techniques have been applied in prognostics, primarily to quantify the importance of input variables for predicting the remaining useful life (RUL) using post-hoc attribution methods. In this work, we propose the application of Concept Bottleneck Models (CBMs), a family of inherently interpretable neural network architectures based on concept explanations, to the task of RUL prediction. Unlike attribution methods, which explain decisions in terms of low-level input features, concepts represent high-level information that is easily understandable by users. Moreover, once verified in actual applications, CBMs enable domain experts to intervene on the concept activations at test-time. We propose using the different degradation modes of an asset as intermediate concepts. Our case studies on the New Commercial Modular AeroPropulsion System Simulation (N-CMAPSS) aircraft engine dataset for RUL prediction demonstrate that the performance of CBMs can be on par or superior to black-box models, while being more interpretable, even when the available labeled concepts are limited. Code available at \href{https://github.com/EPFL-IMOS/concept-prognostics/}{\url{github.com/EPFL-IMOS/concept-prognostics/}}.
Related papers
- Interpret the Internal States of Recommendation Model with Sparse Autoencoder [26.021277330699963]
RecSAE is an automatic, generalizable probing method for interpreting the internal states of Recommendation models.
We train an autoencoder with sparsity constraints to reconstruct internal activations of recommendation models.
We automated the construction of concept dictionaries based on the relationship between latent activations and input item sequences.
arXiv Detail & Related papers (2024-11-09T08:22:31Z) - MulCPred: Learning Multi-modal Concepts for Explainable Pedestrian Action Prediction [57.483718822429346]
MulCPred is proposed that explains its predictions based on multi-modal concepts represented by training samples.
MulCPred is evaluated on multiple datasets and tasks.
arXiv Detail & Related papers (2024-09-14T14:15:28Z) - Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
Concept Bottleneck Models (CBMs) have been proposed to address the 'black-box' problem of deep neural networks.
We propose a novel CBM approach -- called Discover-then-Name-CBM (DN-CBM) -- that inverts the typical paradigm.
Our concept extraction strategy is efficient, since it is agnostic to the downstream task, and uses concepts already known to the model.
arXiv Detail & Related papers (2024-07-19T17:50:11Z) - Self-supervised Interpretable Concept-based Models for Text Classification [9.340843984411137]
This paper proposes a self-supervised Interpretable Concept Embedding Models (ICEMs)
We leverage the generalization abilities of Large-Language Models to predict the concepts labels in a self-supervised way.
ICEMs can be trained in a self-supervised way achieving similar performance to fully supervised concept-based models and end-to-end black-box ones.
arXiv Detail & Related papers (2024-06-20T14:04:53Z) - Beyond Concept Bottleneck Models: How to Make Black Boxes Intervenable? [8.391254800873599]
We introduce a method to perform concept-based interventions on pretrained neural networks, which are not interpretable by design.
We formalise the notion of intervenability as a measure of the effectiveness of concept-based interventions and leverage this definition to fine-tune black boxes.
arXiv Detail & Related papers (2024-01-24T16:02:14Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
Pretrained language models (PLMs) have made significant strides in various natural language processing tasks.
The lack of interpretability due to their black-box'' nature poses challenges for responsible implementation.
We propose a novel approach to interpreting PLMs by employing high-level, meaningful concepts that are easily understandable for humans.
arXiv Detail & Related papers (2023-11-08T20:41:18Z) - Learning Transferable Conceptual Prototypes for Interpretable
Unsupervised Domain Adaptation [79.22678026708134]
In this paper, we propose an inherently interpretable method, named Transferable Prototype Learning ( TCPL)
To achieve this goal, we design a hierarchically prototypical module that transfers categorical basic concepts from the source domain to the target domain and learns domain-shared prototypes for explaining the underlying reasoning process.
Comprehensive experiments show that the proposed method can not only provide effective and intuitive explanations but also outperform previous state-of-the-arts.
arXiv Detail & Related papers (2023-10-12T06:36:41Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
We introduce an interpretable paradigm for trajectory prediction that distributes the uncertainty among semantic concepts.
We validate our approach on real-world autonomous driving data, demonstrating superior performance over state-of-the-art baselines.
arXiv Detail & Related papers (2022-11-16T06:28:20Z) - Post-hoc Concept Bottleneck Models [11.358495577593441]
Concept Bottleneck Models (CBMs) map the inputs onto a set of interpretable concepts and use the concepts to make predictions.
CBMs are restrictive in practice as they require concept labels in the training data to learn the bottleneck and do not leverage strong pretrained models.
We show that we can turn any neural network into a PCBM without sacrificing model performance while still retaining interpretability benefits.
arXiv Detail & Related papers (2022-05-31T00:29:26Z) - AcME -- Accelerated Model-agnostic Explanations: Fast Whitening of the
Machine-Learning Black Box [1.7534486934148554]
interpretability approaches should provide actionable insights without making the users wait.
We propose Accelerated Model-agnostic Explanations (AcME), an interpretability approach that quickly provides feature importance scores both at the global and the local level.
AcME computes feature ranking, but it also provides a what-if analysis tool to assess how changes in features values would affect model predictions.
arXiv Detail & Related papers (2021-12-23T15:18:13Z) - Towards Interpretable Deep Learning Models for Knowledge Tracing [62.75876617721375]
We propose to adopt the post-hoc method to tackle the interpretability issue for deep learning based knowledge tracing (DLKT) models.
Specifically, we focus on applying the layer-wise relevance propagation (LRP) method to interpret RNN-based DLKT model.
Experiment results show the feasibility using the LRP method for interpreting the DLKT model's predictions.
arXiv Detail & Related papers (2020-05-13T04:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.