論文の概要: Exploring the Impact of Personality Traits on Conversational Recommender Systems: A Simulation with Large Language Models
- arxiv url: http://arxiv.org/abs/2504.12313v1
- Date: Wed, 09 Apr 2025 13:21:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-26 04:04:28.894186
- Title: Exploring the Impact of Personality Traits on Conversational Recommender Systems: A Simulation with Large Language Models
- Title(参考訳): 対話型レコメンダシステムにおけるパーソナリティトラストの影響を探る:大規模言語モデルを用いたシミュレーション
- Authors: Xiaoyan Zhao, Yang Deng, Wenjie Wang, Hongzhan lin, Hong Cheng, Rui Zhang, See-Kiong Ng, Tat-Seng Chua,
- Abstract要約: 本稿では,対話型レコメンダシステム(CRS)のためのパーソナリティを考慮したユーザシミュレーションを提案する。
ユーザエージェントはカスタマイズ可能な性格特性と嗜好を誘導し、システムエージェントはCRS内の現実的な相互作用をシミュレートする説得能力を有する。
実験により,現在最先端のLCMは,特定の性格特性に適合した多様なユーザ応答を効果的に生成できることが示された。
- 参考スコア(独自算出の注目度): 70.180385882195
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conversational Recommender Systems (CRSs) engage users in multi-turn interactions to deliver personalized recommendations. The emergence of large language models (LLMs) further enhances these systems by enabling more natural and dynamic user interactions. However, a key challenge remains in understanding how personality traits shape conversational recommendation outcomes. Psychological evidence highlights the influence of personality traits on user interaction behaviors. To address this, we introduce an LLM-based personality-aware user simulation for CRSs (PerCRS). The user agent induces customizable personality traits and preferences, while the system agent possesses the persuasion capability to simulate realistic interaction in CRSs. We incorporate multi-aspect evaluation to ensure robustness and conduct extensive analysis from both user and system perspectives. Experimental results demonstrate that state-of-the-art LLMs can effectively generate diverse user responses aligned with specified personality traits, thereby prompting CRSs to dynamically adjust their recommendation strategies. Our experimental analysis offers empirical insights into the impact of personality traits on the outcomes of conversational recommender systems.
- Abstract(参考訳): Conversational Recommender Systems (CRS) は、ユーザをマルチターンインタラクションに巻き込み、パーソナライズされたレコメンデーションを提供する。
大規模言語モデル(LLM)の出現は、より自然で動的なユーザインタラクションを可能にすることによって、これらのシステムをさらに強化する。
しかし、重要な課題は、人格の特徴がどのように会話による推薦結果を形成するかを理解することである。
心理学的証拠は、人格特性がユーザインタラクション行動に与える影響を強調している。
そこで本研究では,CRS(PerCRS)のためのLCMに基づくパーソナライズ・アウェア・ユーザ・シミュレーションを提案する。
ユーザエージェントはカスタマイズ可能な性格特性と嗜好を誘導し、システムエージェントはCRS内の現実的な相互作用をシミュレートする説得能力を有する。
マルチアスペクト評価を取り入れて、堅牢性を確保し、ユーザとシステムの両方の観点から広範囲な分析を行う。
実験の結果,現在最先端のLCMは,特定の性格特性に適合した多様なユーザ応答を効果的に生成できることが示され,CRSは推薦戦略を動的に調整する。
我々の実験分析は、人格特性が会話レコメンデーションシステムの結果に与える影響に関する実証的な洞察を提供する。
関連論文リスト
- Search-Based Interaction For Conversation Recommendation via Generative Reward Model Based Simulated User [117.82681846559909]
会話レコメンデーションシステム(CRS)は、マルチターンインタラクションを使用してユーザの好みを捉え、パーソナライズされたレコメンデーションを提供する。
本稿では,CRSと自動インタラクションを行うための生成報酬モデルに基づくシミュレーションユーザGRSUを提案する。
論文 参考訳(メタデータ) (2025-04-29T06:37:30Z) - Exploring Personality-Aware Interactions in Salesperson Dialogue Agents [21.282523537612477]
本研究では,Mers-Briggs Type Indicator (MBTI) を用いて定義したユーザペルソナが,営業指向対話エージェントのインタラクション品質とパフォーマンスに与える影響について検討する。
本研究は,対話のダイナミクス,タスク完了率,対話自然性の顕著なパターンを明らかにし,対話エージェントが戦略を洗練させる可能性を明らかにするものである。
論文 参考訳(メタデータ) (2025-04-25T04:10:25Z) - Should We Tailor the Talk? Understanding the Impact of Conversational Styles on Preference Elicitation in Conversational Recommender Systems [19.830560938115436]
本研究では,会話スタイルの違いが会話推薦システム(CRS)の嗜好評価,タスクパフォーマンス,ユーザ満足度に及ぼす影響について検討した。
以上の結果から,ユーザの専門知識に基づく会話戦略の適応と,スタイル間の柔軟性の実現により,CRSにおけるユーザの満足度とレコメンデーションの有効性が向上することが示唆された。
論文 参考訳(メタデータ) (2025-04-17T17:01:17Z) - SimUSER: Simulating User Behavior with Large Language Models for Recommender System Evaluation [1.2430809884830318]
信頼性と費用対効果を両立させるエージェントフレームワークであるSimを紹介した。
Simは、歴史的データから自己一貫性のあるペルソナを識別し、ユニークな背景と個性を持つユーザープロフィールを豊かにする。
我々は,サムネイルがクリック率,露出効果,レビューがユーザエンゲージメントに与える影響を調べる実験を行った。
論文 参考訳(メタデータ) (2025-04-17T07:57:23Z) - Reasoning LLMs for User-Aware Multimodal Conversational Agents [3.533721662684487]
社会ロボティクスにおけるパーソナライゼーションは、効果的な人間とロボットの相互作用を促進するために重要である。
本稿では,ユーザ認識型対話エージェントのための新しいフレームワークUSER-LLM R1を提案する。
提案手法では,チェーン・オブ・シンク(CoT)推論モデルを統合し,ユーザの好みや視覚言語モデルを反復的に推測する。
論文 参考訳(メタデータ) (2025-04-02T13:00:17Z) - Stop Playing the Guessing Game! Target-free User Simulation for Evaluating Conversational Recommender Systems [15.481944998961847]
PEPPERは、実際のユーザインタラクション履歴とレビューから構築された、ターゲットフリーなユーザシミュレータによる評価プロトコルである。
PEPPERは、単純な推測ゲームに陥ることなく、現実的なユーザ-CRS対話を可能にする。
PEPPERは、CRSの嗜好誘発能力を包括的に評価するための詳細な尺度を提示する。
論文 参考訳(メタデータ) (2024-11-25T07:36:20Z) - Towards Empathetic Conversational Recommender Systems [77.53167131692]
本稿では,共感型会話レコメンデータ(ECR)フレームワークを提案する。
ECRには、感情対応アイテムレコメンデーションと感情対応応答生成という、2つの主要なモジュールが含まれている。
ReDialデータセットの実験は、推奨精度を高め、ユーザの満足度を向上させる上で、我々のフレームワークの有効性を検証する。
論文 参考訳(メタデータ) (2024-08-30T15:43:07Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
社会実践, 一貫性, 動的発達という, 心理学に根ざした個性の原則を統合したPersLLMを提案する。
モデルパラメータに直接パーソナリティ特性を組み込み、誘導に対するモデルの抵抗性を高め、一貫性を高め、パーソナリティの動的進化を支援する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z) - A LLM-based Controllable, Scalable, Human-Involved User Simulator Framework for Conversational Recommender Systems [14.646529557978512]
Conversational Recommender System (CRS) はユーザからのリアルタイムフィードバックを利用して好みを動的にモデル化する。
LLM(Large Language Models)は、計算能力の新たな時代を迎えている。
ユーザシミュレータの動作を管理するCSHI(Controlable, scalable, and human-Involved)シミュレータフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-13T03:02:56Z) - AgentCF: Collaborative Learning with Autonomous Language Agents for
Recommender Systems [112.76941157194544]
本稿では,エージェントベースの協調フィルタリングにより,レコメンデータシステムにおけるユーザとイテムのインタラクションをシミュレートするエージェントCFを提案する。
我々は、ユーザだけでなく、アイテムをエージェントとして、創造的に考慮し、両方のエージェントを同時に最適化する協調学習アプローチを開発します。
全体として、最適化されたエージェントは、ユーザ・イテム、ユーザ・ユーザ・ユーザ、アイテム・イテム、集合的インタラクションなど、フレームワーク内での多様なインタラクションの振る舞いを示す。
論文 参考訳(メタデータ) (2023-10-13T16:37:14Z) - Rethinking the Evaluation for Conversational Recommendation in the Era
of Large Language Models [115.7508325840751]
近年の大規模言語モデル(LLM)の成功は、より強力な対話レコメンデーションシステム(CRS)を開発する大きな可能性を示している。
本稿では,ChatGPTの会話レコメンデーションへの活用について検討し,既存の評価プロトコルが不十分であることを明らかにする。
LLMをベースとしたユーザシミュレータを用いた対話型評価手法iEvaLMを提案する。
論文 参考訳(メタデータ) (2023-05-22T15:12:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。