論文の概要: You've Changed: Detecting Modification of Black-Box Large Language Models
- arxiv url: http://arxiv.org/abs/2504.12335v1
- Date: Mon, 14 Apr 2025 04:16:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:39:03.950300
- Title: You've Changed: Detecting Modification of Black-Box Large Language Models
- Title(参考訳): 変更:Black-Boxの大規模言語モデルの修正を検出する
- Authors: Alden Dima, James Foulds, Shimei Pan, Philip Feldman,
- Abstract要約: 大規模言語モデル(LLM)はAPIを通じてサービスとして提供されることが多いため、開発者は振る舞いの変化を検出することが難しい。
生成したテキストの言語的特徴と心理言語学的特徴の分布を比較することで,変化に対するLLMの監視手法を提案する。
- 参考スコア(独自算出の注目度): 4.7541096609711
- License:
- Abstract: Large Language Models (LLMs) are often provided as a service via an API, making it challenging for developers to detect changes in their behavior. We present an approach to monitor LLMs for changes by comparing the distributions of linguistic and psycholinguistic features of generated text. Our method uses a statistical test to determine whether the distributions of features from two samples of text are equivalent, allowing developers to identify when an LLM has changed. We demonstrate the effectiveness of our approach using five OpenAI completion models and Meta's Llama 3 70B chat model. Our results show that simple text features coupled with a statistical test can distinguish between language models. We also explore the use of our approach to detect prompt injection attacks. Our work enables frequent LLM change monitoring and avoids computationally expensive benchmark evaluations.
- Abstract(参考訳): 大規模言語モデル(LLM)はAPIを通じてサービスとして提供されることが多いため、開発者は振る舞いの変化を検出することが難しい。
生成したテキストの言語的特徴と心理言語学的特徴の分布を比較することで,変化に対するLLMの監視手法を提案する。
提案手法では,2つのテキストのサンプルから特徴量の分布が等価かどうかを統計的に検証し,LLMがいつ変化したかを特定する。
5つのOpenAI補完モデルとMetaのLlama 370Bチャットモデルを用いたアプローチの有効性を示す。
以上の結果から, 単純なテキスト特徴と統計的テストが組み合わさって, 言語モデルと区別できることが示唆された。
また,インジェクションアタックの早期検出のためのアプローチについても検討した。
我々の研究は、頻繁なLLM変更監視を可能にし、計算コストの高いベンチマーク評価を回避する。
関連論文リスト
- Enhancing Input-Label Mapping in In-Context Learning with Contrastive Decoding [71.01099784480597]
大規模言語モデル(LLM)は、コンテキスト内学習(ICL)を通じて、様々なタスクで優れる
In-Context Contrastive Decoding (ICCD)を導入する。
ICCDは、正と負のインコンテキストの例の出力分布を対比することで、入力ラベルマッピングを強調する。
論文 参考訳(メタデータ) (2025-02-19T14:04:46Z) - Predicting the Performance of Black-box LLMs through Self-Queries [60.87193950962585]
大規模言語モデル(LLM)は、AIシステムにおいてますます頼りになってきている。
本稿では、フォローアッププロンプトを使用し、異なる応答の確率を表現として捉え、ブラックボックス方式でLCMの特徴を抽出する。
これらの低次元表現上で線形モデルをトレーニングすると、インスタンスレベルでのモデル性能の信頼性を予測できることを示す。
論文 参考訳(メタデータ) (2025-01-02T22:26:54Z) - Pretraining Data Detection for Large Language Models: A Divergence-based Calibration Method [108.56493934296687]
本研究では,乱数から発散する概念に触発された偏差に基づくキャリブレーション手法を導入し,プリトレーニングデータ検出のためのトークン確率のキャリブレーションを行う。
我々は,中国語テキスト上でのLLMの検出手法の性能を評価するために,中国語のベンチマークであるPatentMIAを開発した。
論文 参考訳(メタデータ) (2024-09-23T07:55:35Z) - Show, Don't Tell: Aligning Language Models with Demonstrated Feedback [54.10302745921713]
Demonstration ITerated Task Optimization (DITTO)は、言語モデルの出力とユーザの実証された振る舞いを直接調整する。
我々は,DITTOがニュース記事やメール,ブログ記事などのドメイン間できめ細かいスタイルやタスクアライメントを学習する能力を評価する。
論文 参考訳(メタデータ) (2024-06-02T23:13:56Z) - Which Syntactic Capabilities Are Statistically Learned by Masked
Language Models for Code? [51.29970742152668]
精度に基づく測定に依存することで、モデルの能力が過大評価される可能性があることを強調する。
これらの問題に対処するために,SyntaxEval in Syntactic Capabilitiesというテクニックを導入する。
論文 参考訳(メタデータ) (2024-01-03T02:44:02Z) - Measuring Distributional Shifts in Text: The Advantage of Language
Model-Based Embeddings [11.393822909537796]
実運用における機械学習モデル監視の重要な部分は、入力と出力データのドリフトを測定することである。
大規模言語モデル(LLM)の最近の進歩は、意味的関係を捉える上での有効性を示している。
このような埋め込みを利用してテキストデータの分布変化を測定するクラスタリングに基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-12-04T20:46:48Z) - Quantifying Language Models' Sensitivity to Spurious Features in Prompt Design or: How I learned to start worrying about prompt formatting [68.19544657508509]
言語モデル(LLM)は、言語技術の基本コンポーネントとして採用されている。
いくつかの広く使われているオープンソースLLMは、数ショット設定でプロンプトフォーマットの微妙な変更に対して非常に敏感であることがわかった。
本稿では,与えられたタスクに対して有効なプロンプトフォーマットのサンプルセットを迅速に評価するアルゴリズムを提案し,モデル重み付けにアクセスせずに期待性能の間隔を報告する。
論文 参考訳(メタデータ) (2023-10-17T15:03:30Z) - Masked Language Model Based Textual Adversarial Example Detection [14.734863175424797]
アドリアックは、安全クリティカルなアプリケーションにおける機械学習モデルの信頼性の高いデプロイに対する深刻な脅威である。
本稿では,MLMD(Masked Model-based Detection)という新たなテキスト対逆例検出手法を提案する。
論文 参考訳(メタデータ) (2023-04-18T06:52:14Z) - Interpretable Unified Language Checking [42.816372695828306]
本稿では,人間と機械生成言語の両方に対して,解釈可能で統一された言語チェック(UniLC)手法を提案する。
ファクトチェック, ステレオタイプ検出, ヘイトスピーチ検出タスクの組み合わせにより, LLM は高い性能が得られることがわかった。
論文 参考訳(メタデータ) (2023-04-07T16:47:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。