Coarsening of binary Bose superfluids: an effective theory
- URL: http://arxiv.org/abs/2504.12462v1
- Date: Wed, 16 Apr 2025 19:53:37 GMT
- Title: Coarsening of binary Bose superfluids: an effective theory
- Authors: Elisabeth Gliott, Clara Piekarski, Nicolas Cherroret,
- Abstract summary: We derive an effective equation of motion for binary Bose mixtures, which generalizes the Cahn-Hilliard description of classical binary fluids to superfluid systems.<n>We show that the domain growth law $L(t)sim t2/3$ observed in superfluid mixtures is not driven by hydrodynamic flows, but arises from the competition between interactions and quantum pressure.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We derive an effective equation of motion for binary Bose mixtures, which generalizes the Cahn-Hilliard description of classical binary fluids to superfluid systems. Within this approach, based on a microscopic Hamiltonian formulation, we show that the domain growth law $L(t)\sim t^{2/3}$ observed in superfluid mixtures is not driven by hydrodynamic flows, but arises from the competition between interactions and quantum pressure. The effective theory allows us to derive key properties of superfluid coarsening, including domain growth and Porod's laws. This provides a new theoretical framework for understanding phase separation in superfluid mixtures.
Related papers
- Theory of the correlated quantum Zeno effect in a monitored qubit dimer [41.94295877935867]
We show how the competition between two measurement processes give rise to two distinct Quantum Zeno (QZ) regimes.<n>We develop a theory based on a Gutzwiller ansatz for the wavefunction that is able to capture the structure of the Hilbert phase diagram.<n>We show how the two QZ regimes are intimately connected to the topology of the flow of the underlying non-Hermitian Hamiltonian governing the no-click evolution.
arXiv Detail & Related papers (2025-03-28T19:44:48Z) - Constrained many-body phases in a $\mathbb{Z}_2$-Higgs lattice gauge theory [39.58317527488534]
We study a one-dimensional $mathbbZ$ lattice gauge theory coupled to soft-core bosonic matter at unit filling.
Through a combination of analytical perturbative approaches, we uncover a rich phase diagram driven by gauge-field-mediated resonant pair hopping.
The presence of a bunching state with large number fluctuations motivates experimental realizations in hybrid boson-qubit quantum simulation platforms.
arXiv Detail & Related papers (2025-03-05T19:00:07Z) - Emergent Fracton Hydrodynamics in the Fractional Quantum Hall Regime of Ultracold Atoms [41.94295877935867]
We show that in the lowest Landau level the system generically relaxes subdiffusively.
The slow relaxation is understood from emergent conservation laws of the total charge.
We discuss the prospect of rotating quantum gases as well as ultracold atoms in optical lattices for observing this unconventional relaxation dynamics.
arXiv Detail & Related papers (2024-10-09T18:00:02Z) - Quantum corrections at second order in derivatives to the dynamics of small non-relativistic fluids [0.0]
For mesoscopic fluids consisting of a small number of atoms, second-order corrections can become significant.
We identify relevant second-order terms of quantum origin that contribute already in a static situation.
We assess the influence of these terms on numerical solutions of second-order fluid dynamic equations for the expansion of a mesoscopic ultra-cold Fermi gas released from an anisotropic harmonic trap in two spatial dimensions.
arXiv Detail & Related papers (2024-08-12T12:43:39Z) - Lattice-induced wavefunction effects on trapped superfluids [0.0]
We derive an effective hydrodynamic theory for ultracold bosons in optical lattices.
In a dynamic process, the wavefunction effects are featured by the eigenfrequency, amplitude, and phase shift of an excited breathing mode.
Our discovery advances the connections between the modern band theory and quantum many-body physics.
arXiv Detail & Related papers (2024-01-25T08:04:47Z) - Emergence of fluctuating hydrodynamics in chaotic quantum systems [47.187609203210705]
macroscopic fluctuation theory (MFT) was recently developed to model the hydrodynamics of fluctuations.
We perform large-scale quantum simulations that monitor the full counting statistics of particle-number fluctuations in boson ladders.
Our results suggest that large-scale fluctuations of isolated quantum systems display emergent hydrodynamic behavior.
arXiv Detail & Related papers (2023-06-20T11:26:30Z) - Collective flow of fermionic impurities immersed in a Bose-Einstein Condensate [34.82692226532414]
We study the collective oscillations of spin-polarized fermionic impurities immersed in a Bose-Einstein condensate.
For strong interactions, the Fermi gas perfectly mimics the superfluid hydrodynamic modes of the condensate.
With an increasing number of bosonic thermal excitations, the dynamics of the impurities cross over from the collisionless to the hydrodynamic regime.
arXiv Detail & Related papers (2023-04-16T00:58:05Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Helical superfluid in a frustrated honeycomb Bose-Hubbard model [1.5197843979051469]
We study a "helical" superfluid, a nonzero-momentum condensate in a frustrated bosonic model.
At mean-field Bogoliubov level, such a novel state exhibits "smectic" fluctuation that are qualitatively stronger than that of a conventional superfluid.
arXiv Detail & Related papers (2022-05-31T18:00:01Z) - Mechanism for particle fractionalization and universal edge physics in
quantum Hall fluids [58.720142291102135]
We advance a second-quantization framework that helps reveal an exact fusion mechanism for particle fractionalization in FQH fluids.
We also uncover the fundamental structure behind the condensation of non-local operators characterizing topological order in the lowest-Landau-level (LLL)
arXiv Detail & Related papers (2021-10-12T18:00:00Z) - Fracton hydrodynamics [0.5735035463793008]
We introduce new classes of hydrodynamic theories inspired by the recently discovered fracton phases of quantum matter.
Our framework naturally explains results on dynamics with constrained quantum circuits, as well as recent experiments with ultracold atoms in tilted optical lattices.
arXiv Detail & Related papers (2020-03-20T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.