Agentic AI Optimisation (AAIO): what it is, how it works, why it matters, and how to deal with it
- URL: http://arxiv.org/abs/2504.12482v1
- Date: Wed, 16 Apr 2025 20:38:09 GMT
- Title: Agentic AI Optimisation (AAIO): what it is, how it works, why it matters, and how to deal with it
- Authors: Luciano Floridi, Carlotta Buttaboni, Emmie Hine, Jessica Morley, Claudio Novelli, Tyler Schroder,
- Abstract summary: This article introduces Agentic AI optimisation (AAIO) as an essential methodology for ensuring effective integration between websites and agentic AI systems.<n>By examining the mutual interdependency between website optimisation and agentic AI success, it highlights the virtuous cycle that AAIO can create.<n>The article concludes by affirming AAIO's essential role as part of a fundamental digital infrastructure in the era of autonomous digital agents, advocating for equitable and inclusive access to its benefits.
- Score: 1.8390952204639035
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The emergence of Agentic Artificial Intelligence (AAI) systems capable of independently initiating digital interactions necessitates a new optimisation paradigm designed explicitly for seamless agent-platform interactions. This article introduces Agentic AI Optimisation (AAIO) as an essential methodology for ensuring effective integration between websites and agentic AI systems. Like how Search Engine Optimisation (SEO) has shaped digital content discoverability, AAIO can define interactions between autonomous AI agents and online platforms. By examining the mutual interdependency between website optimisation and agentic AI success, the article highlights the virtuous cycle that AAIO can create. It further explores the governance, ethical, legal, and social implications (GELSI) of AAIO, emphasising the necessity of proactive regulatory frameworks to mitigate potential negative impacts. The article concludes by affirming AAIO's essential role as part of a fundamental digital infrastructure in the era of autonomous digital agents, advocating for equitable and inclusive access to its benefits.
Related papers
- NGENT: Next-Generation AI Agents Must Integrate Multi-Domain Abilities to Achieve Artificial General Intelligence [15.830291699780874]
We argue that the next generation of AI agent (NGENT) should integrate across-domain abilities to advance toward Artificial General Intelligence (AGI)
We propose that future AI agents should synthesize the strengths of these specialized systems into a unified framework capable of operating across text, vision, robotics, reinforcement learning, emotional intelligence, and beyond.
arXiv Detail & Related papers (2025-04-30T08:46:14Z) - Towards Agentic AI Networking in 6G: A Generative Foundation Model-as-Agent Approach [35.05793485239977]
We propose AgentNet, a novel framework for supporting interaction, collaborative learning, and knowledge transfer among AI agents.<n>We consider two application scenarios, digital-twin-based industrial automation and metaverse-based infotainment system, to describe how to apply AgentNet.
arXiv Detail & Related papers (2025-03-20T00:48:44Z) - Media and responsible AI governance: a game-theoretic and LLM analysis [61.132523071109354]
This paper investigates the interplay between AI developers, regulators, users, and the media in fostering trustworthy AI systems.
Using evolutionary game theory and large language models (LLMs), we model the strategic interactions among these actors under different regulatory regimes.
arXiv Detail & Related papers (2025-03-12T21:39:38Z) - Agentic AI: Autonomy, Accountability, and the Algorithmic Society [0.2209921757303168]
Agentic Artificial Intelligence (AI) can autonomously pursue long-term goals, make decisions, and execute complex, multi-turn.<n>This transition from advisory roles to proactive execution challenges established legal, economic, and creative frameworks.<n>We explore challenges in three interrelated domains: creativity and intellectual property, legal and ethical considerations, and competitive effects.
arXiv Detail & Related papers (2025-02-01T03:14:59Z) - AIOpsLab: A Holistic Framework to Evaluate AI Agents for Enabling Autonomous Clouds [12.464941027105306]
AI for IT Operations (AIOps) aims to automate complex operational tasks, such as fault localization and root cause analysis, to reduce human workload and minimize customer impact.<n>Recent advances in Large Language Models (LLMs) and AI agents are revolutionizing AIOps by enabling end-to-end and multitask automation.<n>We present AIOPSLAB, a framework that deploys microservice cloud environments, injects faults, generates workloads, and exports telemetry data but also orchestrates these components and provides interfaces for interacting with and evaluating agents.
arXiv Detail & Related papers (2025-01-12T04:17:39Z) - A Learnable Agent Collaboration Network Framework for Personalized Multimodal AI Search Engine [14.123823081267336]
This paper proposes a novel AI Search Engine framework called the Agent Collaboration Network (ACN)
The ACN framework consists of multiple specialized agents working collaboratively, each with distinct roles such as Account Manager, Solution Strategist, Information Manager, and Content Creator.
A highlight of the ACN is the introduction of a Reflective Forward Optimization method (RFO), which supports the online synergistic adjustment among agents.
arXiv Detail & Related papers (2024-09-01T07:01:22Z) - Principal-Agent Reinforcement Learning: Orchestrating AI Agents with Contracts [20.8288955218712]
We propose a framework where a principal guides an agent in a Markov Decision Process (MDP) using a series of contracts.
We present and analyze a meta-algorithm that iteratively optimize the policies of the principal and agent.
We then scale our algorithm with deep Q-learning and analyze its convergence in the presence of approximation error.
arXiv Detail & Related papers (2024-07-25T14:28:58Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
Existing multi-agent frameworks often struggle with integrating diverse capable third-party agents.
We propose the Internet of Agents (IoA), a novel framework that addresses these limitations.
IoA introduces an agent integration protocol, an instant-messaging-like architecture design, and dynamic mechanisms for agent teaming and conversation flow control.
arXiv Detail & Related papers (2024-07-09T17:33:24Z) - A Learning-based Incentive Mechanism for Mobile AIGC Service in Decentralized Internet of Vehicles [49.86094523878003]
We propose a decentralized incentive mechanism for mobile AIGC service allocation.
We employ multi-agent deep reinforcement learning to find the balance between the supply of AIGC services on RSUs and user demand for services within the IoV context.
arXiv Detail & Related papers (2024-03-29T12:46:07Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
Key method for creating Artificial Intelligence (AI) agents is Reinforcement Learning (RL)
This paper presents a general framework model for integrating and learning structured reasoning into AI agents' policies.
arXiv Detail & Related papers (2023-12-22T17:57:57Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgent is a novel framework that harnesses large language models to create proactive agents.
ProAgent can analyze the present state, and infer the intentions of teammates from observations.
ProAgent exhibits a high degree of modularity and interpretability, making it easily integrated into various coordination scenarios.
arXiv Detail & Related papers (2023-08-22T10:36:56Z) - Towards an Interface Description Template for AI-enabled Systems [77.34726150561087]
Reuse is a common system architecture approach that seeks to instantiate a system architecture with existing components.
There is currently no framework that guides the selection of necessary information to assess their portability to operate in a system different than the one for which the component was originally purposed.
We present ongoing work on establishing an interface description template that captures the main information of an AI-enabled component.
arXiv Detail & Related papers (2020-07-13T20:30:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.