論文の概要: AdaVid: Adaptive Video-Language Pretraining
- arxiv url: http://arxiv.org/abs/2504.12513v1
- Date: Wed, 16 Apr 2025 22:19:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:38:42.860732
- Title: AdaVid: Adaptive Video-Language Pretraining
- Title(参考訳): AdaVid: 適応型ビデオランゲージ事前トレーニング
- Authors: Chaitanya Patel, Juan Carlos Niebles, Ehsan Adeli,
- Abstract要約: 計算制約のあるエッジデバイス上で,効率的なビデオエンコーダを学習するためのフレームワークであるAdaVidを紹介する。
AdaVidは、利用可能なリソースに基づいて計算フットプリントを動的に適応できる効率的なビデオエンコーダを学習する。
- 参考スコア(独自算出の注目度): 25.893795920759572
- License:
- Abstract: Contrastive video-language pretraining has demonstrated great success in learning rich and robust video representations. However, deploying such video encoders on compute-constrained edge devices remains challenging due to their high computational demands. Additionally, existing models are typically trained to process only short video clips, often limited to 4 to 64 frames. In this paper, we introduce AdaVid, a flexible architectural framework designed to learn efficient video encoders that can dynamically adapt their computational footprint based on available resources. At the heart of AdaVid is an adaptive transformer block, inspired by Matryoshka Representation Learning, which allows the model to adjust its hidden embedding dimension at inference time. We show that AdaVid-EgoVLP, trained on video-narration pairs from the large-scale Ego4D dataset, matches the performance of the standard EgoVLP on short video-language benchmarks using only half the compute, and even outperforms EgoVLP when given equal computational resources. We further explore the trade-off between frame count and compute on the challenging Diving48 classification benchmark, showing that AdaVid enables the use of more frames without exceeding computational limits. To handle longer videos, we also propose a lightweight hierarchical network that aggregates short clip features, achieving a strong balance between compute efficiency and accuracy across several long video benchmarks.
- Abstract(参考訳): 対照的なビデオ言語事前学習は、リッチでロバストなビデオ表現を学ぶ上で大きな成功を収めた。
しかし、計算制約のあるエッジデバイスにこのようなビデオエンコーダをデプロイすることは、高い計算要求のため、依然として困難である。
さらに、既存のモデルは、通常、短いビデオクリップのみを処理するように訓練され、しばしば4フレームから64フレームに制限される。
本稿では,効率的なビデオエンコーダの学習を目的としたフレキシブルなアーキテクチャフレームワークであるAdaVidを紹介する。
AdaVidの中心部には、Matryoshka Representation Learningにインスパイアされた適応型トランスフォーマーブロックがあり、モデルが推論時に隠れた埋め込み次元を調整することができる。
大規模なEgo4DデータセットからビデオナレーションペアをトレーニングしたAdaVid-EgoVLPは、計算量の半分しか使っていない短いビデオ言語ベンチマークにおいて、標準のEgoVLPの性能と一致し、計算資源が等しくなるとEgoVLPよりも優れていた。
さらに、挑戦的なDiving48分類ベンチマークにおいて、フレームカウントと計算のトレードオフについて検討し、AdaVidが計算限界を超えることなくより多くのフレームを使用できることを示す。
より長いビデオを扱うために、短いクリップの特徴を集約し、長いビデオベンチマークで計算効率と精度のバランスを保ちながら、軽量な階層ネットワークを提案する。
関連論文リスト
- Video-Panda: Parameter-efficient Alignment for Encoder-free Video-Language Models [26.866184981409607]
本稿では,計算オーバーヘッドを大幅に削減しつつ,競争性能を向上するビデオ言語理解のための効率的なエンコーダレス手法を提案する。
本稿では,ビデオ入力を直接処理する時空間アライメントブロック(STAB)を提案する。
本モデルでは,標準ベンチマークによるオープンエンドビデオ質問応答に対して,エンコーダに基づくアプローチに匹敵する,あるいは優れた性能を実現する。
論文 参考訳(メタデータ) (2024-12-24T18:59:56Z) - VideoLLaMB: Long-context Video Understanding with Recurrent Memory Bridges [42.555895949250704]
VideoLLaMBは、ブリッジ層内の時間メモリトークンを使用して、ビデオシーケンス全体のエンコーディングを可能にする新しいフレームワークである。
SceneTillingアルゴリズムは、ビデオを独立したセマンティックユニットに分割し、セマンティックな整合性を維持する。
効率面では、16フレームでトレーニングされたVideoLLaMBは、1つのNvidia A100 GPU上で最大320フレームをサポートする。
論文 参考訳(メタデータ) (2024-09-02T08:52:58Z) - InternVideo2: Scaling Foundation Models for Multimodal Video Understanding [51.129913789991924]
InternVideo2は、ビデオファウンデーションモデル(FM)の新たなファミリーで、ビデオ認識、ビデオ音声タスク、ビデオ中心タスクの最先端の結果を達成する。
私たちのコアデザインは、マスク付きビデオモデリング、クロスコントラスト学習、予測トークンを統合し、最大6Bビデオサイズまでスケールアップするプログレッシブトレーニングアプローチです。
論文 参考訳(メタデータ) (2024-03-22T17:57:42Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
ダイナミックスビデオのモデリングのため、ビデオ事前トレーニングは難しい。
本稿では,ビデオ事前学習におけるこのような制限を,効率的なビデオ分解によって解決する。
筆者らのフレームワークは,13のマルチモーダルベンチマークにおいて,画像と映像のコンテントの理解と生成が可能であることを実証した。
論文 参考訳(メタデータ) (2024-02-05T16:30:49Z) - A Simple Recipe for Contrastively Pre-training Video-First Encoders Beyond 16 Frames [57.758863967770594]
我々は,大規模な画像テキストモデルを浅部時間融合によりビデオに転送する共通パラダイムを構築した。
1)標準ビデオデータセットにおけるビデオ言語アライメントの低下による空間能力の低下と,(2)処理可能なフレーム数のボトルネックとなるメモリ消費の増大である。
論文 参考訳(メタデータ) (2023-12-12T16:10:19Z) - TESTA: Temporal-Spatial Token Aggregation for Long-form Video-Language
Understanding [20.16000249533665]
TESTAは、似たようなフレームを適応的に集約することで、ビデオセマンティクスを凝縮する。
TESTAに基づいて,各ビデオブロックに分割した時空トークン集約モジュールを備えた事前学習ビデオ言語モデルを導入する。
段落間検索と長文ビデオQAタスクのための5つのデータセットを用いて,本モデルの評価を行った。
論文 参考訳(メタデータ) (2023-10-29T16:25:32Z) - Video-FocalNets: Spatio-Temporal Focal Modulation for Video Action
Recognition [112.66832145320434]
Video-FocalNetは、ローカルなグローバルなコンテキストの両方をモデル化する、ビデオ認識のための効率的かつ効率的なアーキテクチャである。
Video-FocalNetは、自己注意の相互作用と集約のステップを反転させる時間的焦点変調アーキテクチャに基づいている。
我々は,5つの大規模データセット上での映像認識のための最先端のトランスフォーマーモデルに対して,Video-FocalNetsが好適に動作することを示す。
論文 参考訳(メタデータ) (2023-07-13T17:59:33Z) - VLAB: Enhancing Video Language Pre-training by Feature Adapting and
Blending [78.1399386935455]
CLIPのような大規模画像テキストコントラスト事前学習モデルは、高品質なマルチモーダル表現を効果的に学習することが実証されている。
本稿では,VLAB(VLAB: Video Language pre-training by feature generativeality and Blending)という新しいビデオテキスト事前学習手法を提案する。
VLABはCLIP表現をビデオ事前訓練タスクに転送し、幅広いビデオテキストタスクのための統合ビデオマルチモーダルモデルを開発する。
論文 参考訳(メタデータ) (2023-05-22T15:54:22Z) - Frozen CLIP Models are Efficient Video Learners [86.73871814176795]
ビデオ認識はエンドツーエンドの学習パラダイムに支配されている。
Contrastive Vision-Language Pre-Trainingの最近の進歩は、視覚認識タスクのための新しいルートの道を開く。
高品質なビデオ認識モデルを直接トレーニングする効率的なフレームワークである、効率的なビデオ学習を提案する。
論文 参考訳(メタデータ) (2022-08-06T17:38:25Z) - Cross-Architecture Self-supervised Video Representation Learning [42.267775859095664]
自己教師型ビデオ表現学習のためのクロスアーキテクチャ・コントラスト学習フレームワークを提案する。
本稿では,2つのビデオシーケンス間の編集距離を明示的に予測できる時間的自己教師型学習モジュールを提案する。
UCF101およびHMDB51データセットにおける映像検索と行動認識のタスクについて,本手法の評価を行った。
論文 参考訳(メタデータ) (2022-05-26T12:41:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。