UniPhys: Unified Planner and Controller with Diffusion for Flexible Physics-Based Character Control
- URL: http://arxiv.org/abs/2504.12540v1
- Date: Thu, 17 Apr 2025 00:04:31 GMT
- Title: UniPhys: Unified Planner and Controller with Diffusion for Flexible Physics-Based Character Control
- Authors: Yan Wu, Korrawe Karunratanakul, Zhengyi Luo, Siyu Tang,
- Abstract summary: We introduce UniPhys, a diffusion-based behavior cloning framework that unifies motion planning and control into a single model.<n>UniPhys enables flexible, expressive character motion conditioned on multi-modal inputs such as text, trajectories, and goals.<n>We show that UniPhys outperforms prior methods in motion naturalness, generalization, and robustness across diverse control tasks.
- Score: 11.084032074792763
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generating natural and physically plausible character motion remains challenging, particularly for long-horizon control with diverse guidance signals. While prior work combines high-level diffusion-based motion planners with low-level physics controllers, these systems suffer from domain gaps that degrade motion quality and require task-specific fine-tuning. To tackle this problem, we introduce UniPhys, a diffusion-based behavior cloning framework that unifies motion planning and control into a single model. UniPhys enables flexible, expressive character motion conditioned on multi-modal inputs such as text, trajectories, and goals. To address accumulated prediction errors over long sequences, UniPhys is trained with the Diffusion Forcing paradigm, learning to denoise noisy motion histories and handle discrepancies introduced by the physics simulator. This design allows UniPhys to robustly generate physically plausible, long-horizon motions. Through guided sampling, UniPhys generalizes to a wide range of control signals, including unseen ones, without requiring task-specific fine-tuning. Experiments show that UniPhys outperforms prior methods in motion naturalness, generalization, and robustness across diverse control tasks.
Related papers
- VLIPP: Towards Physically Plausible Video Generation with Vision and Language Informed Physical Prior [88.51778468222766]
Video diffusion models (VDMs) have advanced significantly in recent years, enabling the generation of highly realistic videos.
VDMs often fail to produce physically plausible videos due to an inherent lack of understanding of physics.
We propose a novel two-stage image-to-video generation framework that explicitly incorporates physics with vision and language informed physical prior.
arXiv Detail & Related papers (2025-03-30T09:03:09Z) - Diffuse-CLoC: Guided Diffusion for Physics-based Character Look-ahead Control [16.319698848279966]
We present Diffuse-CLoC, a guided diffusion framework for physics-based look-ahead control.<n>It enables intuitive, steerable, and physically realistic motion generation.
arXiv Detail & Related papers (2025-03-14T18:42:29Z) - Spatial-Temporal Graph Diffusion Policy with Kinematic Modeling for Bimanual Robotic Manipulation [88.83749146867665]
Existing approaches learn a policy to predict a distant next-best end-effector pose.
They then compute the corresponding joint rotation angles for motion using inverse kinematics.
We propose Kinematics enhanced Spatial-TemporAl gRaph diffuser.
arXiv Detail & Related papers (2025-03-13T17:48:35Z) - Morph: A Motion-free Physics Optimization Framework for Human Motion Generation [25.51726849102517]
Our framework achieves state-of-the-art motion generation quality while improving physical plausibility drastically.<n>Experiments on text-to-motion and music-to-dance generation tasks demonstrate that our framework achieves state-of-the-art motion generation quality.
arXiv Detail & Related papers (2024-11-22T14:09:56Z) - Optimal-state Dynamics Estimation for Physics-based Human Motion Capture from Videos [6.093379844890164]
We propose a novel method to selectively incorporate the physics models with the kinematics observations in an online setting.
A recurrent neural network is introduced to realize a Kalman filter that attentively balances the kinematics input and simulated motion.
The proposed approach excels in the physics-based human pose estimation task and demonstrates the physical plausibility of the predictive dynamics.
arXiv Detail & Related papers (2024-10-10T10:24:59Z) - Programmable Motion Generation for Open-Set Motion Control Tasks [51.73738359209987]
We introduce a new paradigm, programmable motion generation.
In this paradigm, any given motion control task is broken down into a combination of atomic constraints.
These constraints are then programmed into an error function that quantifies the degree to which a motion sequence adheres to them.
arXiv Detail & Related papers (2024-05-29T17:14:55Z) - InsActor: Instruction-driven Physics-based Characters [65.4702927454252]
In this paper, we present a principled generative framework that produces instruction-driven animations of physics-based characters.
Our framework empowers InsActor to capture complex relationships between high-level human instructions and character motions.
InsActor achieves state-of-the-art results on various tasks, including instruction-driven motion generation and instruction-driven waypoint heading.
arXiv Detail & Related papers (2023-12-28T17:10:31Z) - Universal Humanoid Motion Representations for Physics-Based Control [71.46142106079292]
We present a universal motion representation that encompasses a comprehensive range of motor skills for physics-based humanoid control.
We first learn a motion imitator that can imitate all of human motion from a large, unstructured motion dataset.
We then create our motion representation by distilling skills directly from the imitator.
arXiv Detail & Related papers (2023-10-06T20:48:43Z) - DROP: Dynamics Responses from Human Motion Prior and Projective Dynamics [21.00283279991885]
We introduce DROP, a novel framework for modeling Dynamics Responses of humans using generative mOtion prior and Projective dynamics.
We conduct extensive evaluations of our model across different motion tasks and various physical perturbations, demonstrating the scalability and diversity of responses.
arXiv Detail & Related papers (2023-09-24T20:25:59Z) - Interactive Character Control with Auto-Regressive Motion Diffusion Models [18.727066177880708]
We propose A-MDM (Auto-regressive Motion Diffusion Model) for real-time motion synthesis.
Our conditional diffusion model takes an initial pose as input, and auto-regressively generates successive motion frames conditioned on previous frame.
We introduce a suite of techniques for incorporating interactive controls into A-MDM, such as task-oriented sampling, in-painting, and hierarchical reinforcement learning.
arXiv Detail & Related papers (2023-06-01T07:48:34Z) - PlasticineLab: A Soft-Body Manipulation Benchmark with Differentiable
Physics [89.81550748680245]
We introduce a new differentiable physics benchmark called PasticineLab.
In each task, the agent uses manipulators to deform the plasticine into the desired configuration.
We evaluate several existing reinforcement learning (RL) methods and gradient-based methods on this benchmark.
arXiv Detail & Related papers (2021-04-07T17:59:23Z) - UniCon: Universal Neural Controller For Physics-based Character Motion [70.45421551688332]
We propose a physics-based universal neural controller (UniCon) that learns to master thousands of motions with different styles by learning on large-scale motion datasets.
UniCon can support keyboard-driven control, compose motion sequences drawn from a large pool of locomotion and acrobatics skills and teleport a person captured on video to a physics-based virtual avatar.
arXiv Detail & Related papers (2020-11-30T18:51:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.