TraCeS: Trajectory Based Credit Assignment From Sparse Safety Feedback
- URL: http://arxiv.org/abs/2504.12557v2
- Date: Wed, 23 Apr 2025 04:44:58 GMT
- Title: TraCeS: Trajectory Based Credit Assignment From Sparse Safety Feedback
- Authors: Siow Meng Low, Akshat Kumar,
- Abstract summary: In safe reinforcement learning (RL), auxiliary safety costs are used to align the agent to safe decision making.<n>In practice, safety constraints, including cost functions and budgets, are unknown or hard to specify.<n>We address a general setting where the true safety definition is unknown, and has to be learned from sparsely labeled data.
- Score: 15.904640266226023
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In safe reinforcement learning (RL), auxiliary safety costs are used to align the agent to safe decision making. In practice, safety constraints, including cost functions and budgets, are unknown or hard to specify, as it requires anticipation of all possible unsafe behaviors. We therefore address a general setting where the true safety definition is unknown, and has to be learned from sparsely labeled data. Our key contributions are: first, we design a safety model that performs credit assignment to estimate each decision step's impact on the overall safety using a dataset of diverse trajectories and their corresponding binary safety labels (i.e., whether the corresponding trajectory is safe/unsafe). Second, we illustrate the architecture of our safety model to demonstrate its ability to learn a separate safety score for each timestep. Third, we reformulate the safe RL problem using the proposed safety model and derive an effective algorithm to optimize a safe yet rewarding policy. Finally, our empirical results corroborate our findings and show that this approach is effective in satisfying unknown safety definition, and scalable to various continuous control tasks.
Related papers
- Safe Vision-Language Models via Unsafe Weights Manipulation [75.04426753720551]
We revise safety evaluation by introducing Safe-Ground, a new set of metrics that evaluate safety at different levels of granularity.<n>We take a different direction and explore whether it is possible to make a model safer without training, introducing Unsafe Weights Manipulation (UWM)<n>UWM uses a calibration set of safe and unsafe instances to compare activations between safe and unsafe content, identifying the most important parameters for processing the latter.
arXiv Detail & Related papers (2025-03-14T17:00:22Z) - Probabilistic Shielding for Safe Reinforcement Learning [51.35559820893218]
In real-life scenarios, a Reinforcement Learning (RL) agent must often also behave in a safe manner, including at training time.<n>We present a new, scalable method, which enjoys strict formal guarantees for Safe RL.<n>We show that our approach provides a strict formal safety guarantee that the agent stays safe at training and test time.
arXiv Detail & Related papers (2025-03-09T17:54:33Z) - Vulnerability Mitigation for Safety-Aligned Language Models via Debiasing [12.986006070964772]
Safety alignment is an essential research topic for real-world AI applications.<n>Our study first identified the difficulty of eliminating such vulnerabilities without sacrificing the model's helpfulness.<n>Our method could enhance the model's helpfulness while maintaining safety, thus improving the trade-off-front.
arXiv Detail & Related papers (2025-02-04T09:31:54Z) - What Makes and Breaks Safety Fine-tuning? A Mechanistic Study [64.9691741899956]
Safety fine-tuning helps align Large Language Models (LLMs) with human preferences for their safe deployment.
We design a synthetic data generation framework that captures salient aspects of an unsafe input.
Using this, we investigate three well-known safety fine-tuning methods.
arXiv Detail & Related papers (2024-07-14T16:12:57Z) - Safety through Permissibility: Shield Construction for Fast and Safe Reinforcement Learning [57.84059344739159]
"Shielding" is a popular technique to enforce safety inReinforcement Learning (RL)
We propose a new permissibility-based framework to deal with safety and shield construction.
arXiv Detail & Related papers (2024-05-29T18:00:21Z) - Safe Reinforcement Learning with Learned Non-Markovian Safety Constraints [15.904640266226023]
We design a safety model that performs credit assignment to assess contributions of partial state-action trajectories on safety.
We derive an effective algorithm for optimizing a safe policy using the learned safety model.
We devise a method to dynamically adapt the tradeoff coefficient between safety reward and safety compliance.
arXiv Detail & Related papers (2024-05-05T17:27:22Z) - Global Safe Sequential Learning via Efficient Knowledge Transfer [21.817220232038157]
We propose safe transfer sequential learning to accelerate task learning and to expand the explorable safe region.<n>By leveraging abundant offline data from a related source task, our approach guides exploration in the target task more effectively.<n>Our experiments demonstrate that this approach, compared to state-of-the-art methods, learns tasks with lower data consumption.
arXiv Detail & Related papers (2024-02-22T09:43:25Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
This paper revisits prior work in this scope from the perspective of state-wise safe RL.
We propose Unrolling Safety Layer (USL), a joint method that combines safety optimization and safety projection.
To facilitate further research in this area, we reproduce related algorithms in a unified pipeline and incorporate them into SafeRL-Kit.
arXiv Detail & Related papers (2022-12-12T06:30:17Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Fail-Safe Adversarial Generative Imitation Learning [9.594432031144716]
We propose a safety layer that enables a closed-form probability density/gradient of the safe generative continuous policy, end-to-end generative adversarial training, and worst-case safety guarantees.
The safety layer maps all actions into a set of safe actions, and uses the change-of-variables formula plus additivity of measures for the density.
In an experiment on real-world driver interaction data, we empirically demonstrate tractability, safety and imitation performance of our approach.
arXiv Detail & Related papers (2022-03-03T13:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.