Fail-Safe Adversarial Generative Imitation Learning
- URL: http://arxiv.org/abs/2203.01696v2
- Date: Fri, 28 Jul 2023 13:38:06 GMT
- Title: Fail-Safe Adversarial Generative Imitation Learning
- Authors: Philipp Geiger, Christoph-Nikolas Straehle
- Abstract summary: We propose a safety layer that enables a closed-form probability density/gradient of the safe generative continuous policy, end-to-end generative adversarial training, and worst-case safety guarantees.
The safety layer maps all actions into a set of safe actions, and uses the change-of-variables formula plus additivity of measures for the density.
In an experiment on real-world driver interaction data, we empirically demonstrate tractability, safety and imitation performance of our approach.
- Score: 9.594432031144716
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For flexible yet safe imitation learning (IL), we propose theory and a
modular method, with a safety layer that enables a closed-form probability
density/gradient of the safe generative continuous policy, end-to-end
generative adversarial training, and worst-case safety guarantees. The safety
layer maps all actions into a set of safe actions, and uses the
change-of-variables formula plus additivity of measures for the density. The
set of safe actions is inferred by first checking safety of a finite sample of
actions via adversarial reachability analysis of fallback maneuvers, and then
concluding on the safety of these actions' neighborhoods using, e.g., Lipschitz
continuity. We provide theoretical analysis showing the robustness advantage of
using the safety layer already during training (imitation error linear in the
horizon) compared to only using it at test time (up to quadratic error). In an
experiment on real-world driver interaction data, we empirically demonstrate
tractability, safety and imitation performance of our approach.
Related papers
- Safe Reinforcement Learning with Learned Non-Markovian Safety Constraints [15.904640266226023]
We design a safety model that performs credit assignment to assess contributions of partial state-action trajectories on safety.
We derive an effective algorithm for optimizing a safe policy using the learned safety model.
We devise a method to dynamically adapt the tradeoff coefficient between safety reward and safety compliance.
arXiv Detail & Related papers (2024-05-05T17:27:22Z) - Safeguarded Progress in Reinforcement Learning: Safe Bayesian
Exploration for Control Policy Synthesis [63.532413807686524]
This paper addresses the problem of maintaining safety during training in Reinforcement Learning (RL)
We propose a new architecture that handles the trade-off between efficient progress and safety during exploration.
arXiv Detail & Related papers (2023-12-18T16:09:43Z) - State-Wise Safe Reinforcement Learning With Pixel Observations [12.338614299403305]
We propose a novel pixel-observation safe RL algorithm that efficiently encodes state-wise safety constraints with unknown hazard regions.
As a joint learning framework, our approach begins by constructing a latent dynamics model with low-dimensional latent spaces derived from pixel observations.
We then build and learn a latent barrier-like function on top of the latent dynamics and conduct policy optimization simultaneously, thereby improving both safety and the total expected return.
arXiv Detail & Related papers (2023-11-03T20:32:30Z) - Safety Margins for Reinforcement Learning [53.10194953873209]
We show how to leverage proxy criticality metrics to generate safety margins.
We evaluate our approach on learned policies from APE-X and A3C within an Atari environment.
arXiv Detail & Related papers (2023-07-25T16:49:54Z) - Approximate Shielding of Atari Agents for Safe Exploration [83.55437924143615]
We propose a principled algorithm for safe exploration based on the concept of shielding.
We present preliminary results that show our approximate shielding algorithm effectively reduces the rate of safety violations.
arXiv Detail & Related papers (2023-04-21T16:19:54Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
We introduce a general approach for seeking high dimensional non-linear optimization problems in which maintaining safety during learning is crucial.
Our approach called LBSGD is based on applying a logarithmic barrier approximation with a carefully chosen step size.
We demonstrate the effectiveness of our approach on minimizing violation in policy tasks in safe reinforcement learning.
arXiv Detail & Related papers (2022-07-21T11:14:47Z) - ProBF: Learning Probabilistic Safety Certificates with Barrier Functions [31.203344483485843]
The control barrier function is a useful tool to guarantee safety if we have access to the ground-truth system dynamics.
In practice, we have inaccurate knowledge of the system dynamics, which can lead to unsafe behaviors.
We show the efficacy of this method through experiments on Segway and Quadrotor simulations.
arXiv Detail & Related papers (2021-12-22T20:18:18Z) - Learning to Act Safely with Limited Exposure and Almost Sure Certainty [1.0323063834827415]
This paper aims to put forward the concept that learning to take safe actions in unknown environments, even with probability one guarantees, can be achieved without the need for exploratory trials.
We first focus on the canonical multi-armed bandit problem and seek to study the intrinsic trade-offs of learning safety in the presence of uncertainty.
arXiv Detail & Related papers (2021-05-18T18:05:12Z) - Context-Aware Safe Reinforcement Learning for Non-Stationary
Environments [24.75527261989899]
Safety is a critical concern when deploying reinforcement learning agents for realistic tasks.
We propose the context-aware safe reinforcement learning (CASRL) method to realize safe adaptation in non-stationary environments.
Results show that the proposed algorithm significantly outperforms existing baselines in terms of safety and robustness.
arXiv Detail & Related papers (2021-01-02T23:52:22Z) - Conservative Safety Critics for Exploration [120.73241848565449]
We study the problem of safe exploration in reinforcement learning (RL)
We learn a conservative safety estimate of environment states through a critic.
We show that the proposed approach can achieve competitive task performance while incurring significantly lower catastrophic failure rates.
arXiv Detail & Related papers (2020-10-27T17:54:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.