MetaSynth: Meta-Prompting-Driven Agentic Scaffolds for Diverse Synthetic Data Generation
- URL: http://arxiv.org/abs/2504.12563v1
- Date: Thu, 17 Apr 2025 01:25:15 GMT
- Title: MetaSynth: Meta-Prompting-Driven Agentic Scaffolds for Diverse Synthetic Data Generation
- Authors: Haris Riaz, Sourav Bhabesh, Vinayak Arannil, Miguel Ballesteros, Graham Horwood,
- Abstract summary: We propose a method for generating synthetic data that enhances diversity through meta-prompting.<n>We successfully adapt a well-trained LLM to two specialized domains-Finance and Biomedicine.<n>Our findings suggest that a few million tokens of diverse synthetic data without mixing any real data, is sufficient for effective domain adaptation.
- Score: 10.231668557630577
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent smaller language models such Phi-3.5 and Phi-4 rely on synthetic data generated using larger Language models. Questions remain about leveraging synthetic data for other use cases, such as adapting LLMs to specific domains. A key limitation of synthetic data is low diversity, which negatively impacts its downstream applicability for improving other models. To address this, we propose MetaSynth, a method for generating synthetic data that enhances diversity through meta-prompting, where a language model orchestrates multiple "expert" LLM agents to collaboratively generate data. Using only 25 million tokens of synthetic data generated with MetaSynth, we successfully adapt a well-trained LLM (Mistral-7B-v0.3) to two specialized domains-Finance and Biomedicine-without compromising the capabilities of the resulting model in general tasks. In addition, we evaluate the diversity of our synthetic data using seven automated metrics, and find that it approaches the diversity of LLM pre-training corpora. Continually pre-training Mistral-7B-v0.3 with MetaSynth notably outperforms the base LLM, showing improvements of up to 4.08% in Finance and 13.75% in Biomedicine. The same model shows degraded performance when trained on data generated using a template prompt, even when the template includes prior generations and varying In-Context exemplars of real data. Our findings suggest that a few million tokens of diverse synthetic data without mixing any real data, is sufficient for effective domain adaptation when using MetaSynth.
Related papers
- Scaling Laws of Synthetic Data for Language Models [132.67350443447611]
We introduce SynthLLM, a scalable framework that transforms pre-training corpora into diverse, high-quality synthetic datasets.<n>Our approach achieves this by automatically extracting and recombining high-level concepts across multiple documents using a graph algorithm.
arXiv Detail & Related papers (2025-03-25T11:07:12Z) - Data-Constrained Synthesis of Training Data for De-Identification [0.0]
We domain-adapt large language models (LLMs) to the clinical domain.
We generate synthetic clinical texts that are machine-annotated with tags for personally identifiable information.
The synthetic corpora are then used to train synthetic NER models.
arXiv Detail & Related papers (2025-02-20T16:09:27Z) - Few-shot LLM Synthetic Data with Distribution Matching [37.55363714371521]
Large language models (LLMs) produce high-quality synthetic data to enhance the performance of smaller models.<n>LLMs-generated synthetic data often differs from the real data in key language attributes.<n>We introduce SynAlign: a synthetic data generation and filtering framework based on key attribute distribution matching.
arXiv Detail & Related papers (2025-02-09T16:43:32Z) - Generating Realistic Tabular Data with Large Language Models [49.03536886067729]
Large language models (LLM) have been used for diverse tasks, but do not capture the correct correlation between the features and the target variable.
We propose a LLM-based method with three important improvements to correctly capture the ground-truth feature-class correlation in the real data.
Our experiments show that our method significantly outperforms 10 SOTA baselines on 20 datasets in downstream tasks.
arXiv Detail & Related papers (2024-10-29T04:14:32Z) - On the Diversity of Synthetic Data and its Impact on Training Large Language Models [34.00031258223175]
Large Language Models (LLMs) have accentuated the need for diverse, high-quality pre-training data.
Synthetic data emerges as a viable solution to the challenges of data scarcity and inaccessibility.
We study the downstream effects of synthetic data diversity during both the pre-training and fine-tuning stages.
arXiv Detail & Related papers (2024-10-19T22:14:07Z) - TarGEN: Targeted Data Generation with Large Language Models [51.87504111286201]
TarGEN is a multi-step prompting strategy for generating high-quality synthetic datasets.
We augment TarGEN with a method known as self-correction empowering LLMs to rectify inaccurately labeled instances.
A comprehensive analysis of the synthetic dataset compared to the original dataset reveals similar or higher levels of dataset complexity and diversity.
arXiv Detail & Related papers (2023-10-27T03:32:17Z) - Let's Synthesize Step by Step: Iterative Dataset Synthesis with Large
Language Models by Extrapolating Errors from Small Models [69.76066070227452]
*Data Synthesis* is a promising way to train a small model with very little labeled data.
We propose *Synthesis Step by Step* (**S3**), a data synthesis framework that shrinks this distribution gap.
Our approach improves the performance of a small model by reducing the gap between the synthetic dataset and the real data.
arXiv Detail & Related papers (2023-10-20T17:14:25Z) - MLLM-DataEngine: An Iterative Refinement Approach for MLLM [62.30753425449056]
We propose a novel closed-loop system that bridges data generation, model training, and evaluation.
Within each loop, the MLLM-DataEngine first analyze the weakness of the model based on the evaluation results.
For targeting, we propose an Adaptive Bad-case Sampling module, which adjusts the ratio of different types of data.
For quality, we resort to GPT-4 to generate high-quality data with each given data type.
arXiv Detail & Related papers (2023-08-25T01:41:04Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
We show how the generative process affects the downstream ML task.
We introduce Deep Generative Ensemble (DGE) to approximate the posterior distribution over the generative process model parameters.
arXiv Detail & Related papers (2023-05-16T07:30:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.