論文の概要: SAM-Based Building Change Detection with Distribution-Aware Fourier Adaptation and Edge-Constrained Warping
- arxiv url: http://arxiv.org/abs/2504.12619v1
- Date: Thu, 17 Apr 2025 03:47:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:37:01.016375
- Title: SAM-Based Building Change Detection with Distribution-Aware Fourier Adaptation and Edge-Constrained Warping
- Title(参考訳): 分布を考慮したフーリエ適応とエッジ拘束型ワープによるSAMによる建物変化検出
- Authors: Yun-Cheng Li, Sen Lei, Yi-Tao Zhao, Heng-Chao Li, Jun Li, Antonio Plaza,
- Abstract要約: 建築変化検出は、都市開発、災害評価、軍事偵察において困難である。
既存のアダプタベースファインチューニングアプローチは、不均衡な建物分布の課題に直面している。
分布を考慮したフーリエ適応とエッジ拘束型ワープを備えたSAMベースの新しいネットワークを提案する。
- 参考スコア(独自算出の注目度): 17.50713353046039
- License:
- Abstract: Building change detection remains challenging for urban development, disaster assessment, and military reconnaissance. While foundation models like Segment Anything Model (SAM) show strong segmentation capabilities, SAM is limited in the task of building change detection due to domain gap issues. Existing adapter-based fine-tuning approaches face challenges with imbalanced building distribution, resulting in poor detection of subtle changes and inaccurate edge extraction. Additionally, bi-temporal misalignment in change detection, typically addressed by optical flow, remains vulnerable to background noises. This affects the detection of building changes and compromises both detection accuracy and edge recognition. To tackle these challenges, we propose a new SAM-Based Network with Distribution-Aware Fourier Adaptation and Edge-Constrained Warping (FAEWNet) for building change detection. FAEWNet utilizes the SAM encoder to extract rich visual features from remote sensing images. To guide SAM in focusing on specific ground objects in remote sensing scenes, we propose a Distribution-Aware Fourier Aggregated Adapter to aggregate task-oriented changed information. This adapter not only effectively addresses the domain gap issue, but also pays attention to the distribution of changed buildings. Furthermore, to mitigate noise interference and misalignment in height offset estimation, we design a novel flow module that refines building edge extraction and enhances the perception of changed buildings. Our state-of-the-art results on the LEVIR-CD, S2Looking and WHU-CD datasets highlight the effectiveness of FAEWNet. The code is available at https://github.com/SUPERMAN123000/FAEWNet.
- Abstract(参考訳): 建築変化の検出は、都市開発、災害評価、軍事偵察において依然として困難である。
Segment Anything Model (SAM)のような基盤モデルは強力なセグメンテーション能力を示しているが、SAMはドメインギャップの問題による変更検出を構築するタスクに限られている。
既存のアダプタベースファインチューニングアプローチでは、不均衡な建物分布が問題になり、微妙な変化の検出が不十分になり、エッジ抽出が不正確になる。
さらに、光学的流れによって対処される変化検出における両時間的ずれは、背景雑音に弱いままである。
これは、建物変更の検出に影響を与え、検出精度とエッジ認識の両方を損なう。
これらの課題に対処するため、我々は、変更検出を構築するために、分布対応フーリエ適応とエッジ制約ウォーピング(FAEWNet)を備えたSAMベースの新しいネットワークを提案する。
FAEWNetはSAMエンコーダを使用して、リモートセンシング画像からリッチな視覚的特徴を抽出する。
リモートセンシングシーンにおける特定の接地対象に焦点を合わせるために,タスク指向の変更情報を集約する分布認識フーリエアグリゲータを提案する。
このアダプタは、ドメインギャップの問題に効果的に対処するだけでなく、変更した建物の分布にも注意を払う。
さらに,高さオフセット推定における騒音干渉や不整合を緩和するために,建物縁の抽出を洗練し,変化した建物の知覚を高める新しいフローモジュールを設計する。
LEVIR-CD, S2Looking, WHU-CDデータセットの最先端結果は, FAEWNetの有効性を浮き彫りにした。
コードはhttps://github.com/SUPERMAN123000/FAEWNetで入手できる。
関連論文リスト
- Joint-Optimized Unsupervised Adversarial Domain Adaptation in Remote Sensing Segmentation with Prompted Foundation Model [32.03242732902217]
本稿では、ソースドメインデータに基づいてトレーニングされたモデルをターゲットドメインサンプルに適用するという課題に対処する。
SAM(Segment Anything Model)とSAM-JOANet(SAM-JOANet)を併用した協調最適化対向ネットワークを提案する。
論文 参考訳(メタデータ) (2024-11-08T02:15:20Z) - EfficientCD: A New Strategy For Change Detection Based With Bi-temporal Layers Exchanged [3.3885253104046993]
本稿では,リモートセンシング画像変化検出のためのEfficientCDという新しいディープラーニングフレームワークを提案する。
このフレームワークは機能抽出のバックボーンネットワークとしてEfficientNetを使用している。
EfficientCDは4つのリモートセンシングデータセットで実験的に検証されている。
論文 参考訳(メタデータ) (2024-07-22T19:11:50Z) - GeneralAD: Anomaly Detection Across Domains by Attending to Distorted Features [68.14842693208465]
GeneralADは、意味的、ほぼ分布的、産業的設定で動作するように設計された異常検出フレームワークである。
本稿では,ノイズ付加やシャッフルなどの簡単な操作を施した自己教師付き異常生成モジュールを提案する。
提案手法を10のデータセットに対して広範囲に評価し,6つの実験結果と,残りの6つの実験結果を得た。
論文 参考訳(メタデータ) (2024-07-17T09:27:41Z) - MutDet: Mutually Optimizing Pre-training for Remote Sensing Object Detection [36.478530086163744]
本研究では,MutDetと呼ばれるリモートセンシングオブジェクト検出のための,Mutally最適化事前学習フレームワークを提案する。
MutDetはオブジェクトの埋め込みを融合し、検出器は最後のエンコーダ層に双方向に機能し、情報インタラクションを強化する。
様々な環境での実験は、新しい最先端の転送性能を示している。
論文 参考訳(メタデータ) (2024-07-13T15:28:15Z) - SRC-Net: Bi-Temporal Spatial Relationship Concerned Network for Change Detection [9.682463974799893]
リモートセンシング画像における変化検出(CD)は, 環境モニタリング, 都市開発, 災害管理における重要な課題である。
本稿では,CDのための時空間関係ネットワークであるSRC-Netを提案する。
論文 参考訳(メタデータ) (2024-06-09T06:53:39Z) - ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection [65.59969454655996]
本稿では,変化領域を正確に推定するために,リッチな文脈情報を利用する効率的な変化検出フレームワークELGC-Netを提案する。
提案するELGC-Netは、リモートセンシング変更検出ベンチマークにおいて、最先端の性能を新たに設定する。
また,ELGC-Net-LWも導入した。
論文 参考訳(メタデータ) (2024-03-26T17:46:25Z) - Transformation-Invariant Network for Few-Shot Object Detection in Remote
Sensing Images [15.251042369061024]
FSOD(Few-shot Object Detection)は、トレーニングのために大量のラベル付きデータを頼りにしている。
リモートセンシング画像におけるオブジェクトのスケールと向きのバリエーションは、既存のFSOD法に重大な課題をもたらす。
特徴ピラミッドネットワークの統合と,クエリ機能向上のためのプロトタイプ機能の利用を提案する。
論文 参考訳(メタデータ) (2023-03-13T02:21:38Z) - Robust Change Detection Based on Neural Descriptor Fields [53.111397800478294]
我々は、部分的に重なり合う観測結果とノイズのある局所化結果に頑健なオブジェクトレベルのオンライン変化検出手法を開発した。
形状符号の類似性を利用して物体を連想させ, 局所的な物体近傍の空間配置を比較することにより, 観測重複や局所雑音に対する頑健性を示す。
論文 参考訳(メタデータ) (2022-08-01T17:45:36Z) - Multitask AET with Orthogonal Tangent Regularity for Dark Object
Detection [84.52197307286681]
暗黒環境下でのオブジェクト検出を強化するために,新しいマルチタスク自動符号化変換(MAET)モデルを提案する。
自己超越的な方法で、MAETは、現実的な照明劣化変換を符号化して復号することで、本質的な視覚構造を学習する。
我々は,合成および実世界のデータセットを用いて最先端のパフォーマンスを達成した。
論文 参考訳(メタデータ) (2022-05-06T16:27:14Z) - Exploring Sequence Feature Alignment for Domain Adaptive Detection
Transformers [141.70707071815653]
本稿では,検出変圧器の適応に特化して設計された新しいシーケンス特徴アライメント(SFA)法を提案する。
SFAはドメインクエリベースの機能アライメント(DQFA)モジュールとトークンワイド機能アライメント(TDA)モジュールで構成される。
3つの挑戦的なベンチマーク実験により、SFAは最先端のドメイン適応オブジェクト検出方法より優れていることが示された。
論文 参考訳(メタデータ) (2021-07-27T07:17:12Z) - Robust Object Detection via Instance-Level Temporal Cycle Confusion [89.1027433760578]
物体検出器の分布外一般化を改善するための補助的自己監視タスクの有効性を検討する。
最大エントロピーの原理に触発されて,新しい自己監督タスクであるインスタンスレベル時間サイクル混乱(cycconf)を導入する。
それぞれのオブジェクトに対して、タスクは、ビデオ内の隣接するフレームで最も異なるオブジェクトの提案を見つけ、自己スーパービジョンのために自分自身にサイクルバックすることです。
論文 参考訳(メタデータ) (2021-04-16T21:35:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。