Accurate Tracking of Arabidopsis Root Cortex Cell Nuclei in 3D Time-Lapse Microscopy Images Based on Genetic Algorithm
- URL: http://arxiv.org/abs/2504.12676v1
- Date: Thu, 17 Apr 2025 06:07:17 GMT
- Title: Accurate Tracking of Arabidopsis Root Cortex Cell Nuclei in 3D Time-Lapse Microscopy Images Based on Genetic Algorithm
- Authors: Yu Song, Tatsuaki Goh, Yinhao Li, Jiahua Dong, Shunsuke Miyashima, Yutaro Iwamoto, Yohei Kondo, Keiji Nakajima, Yen-wei Chen,
- Abstract summary: We propose an accurate tracking method based on Genetic algorithm (GA) using knowledge of Arabidopsis root cellular patterns and spatial relationship among volumes.<n>Our method has been evaluated on a long-time live imaging dataset of Arabidopsis root tips, and with minor manual rectification, it accurately tracks nuclei.
- Score: 16.657595219532674
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Arabidopsis is a widely used model plant to gain basic knowledge on plant physiology and development. Live imaging is an important technique to visualize and quantify elemental processes in plant development. To uncover novel theories underlying plant growth and cell division, accurate cell tracking on live imaging is of utmost importance. The commonly used cell tracking software, TrackMate, adopts tracking-by-detection fashion, which applies Laplacian of Gaussian (LoG) for blob detection, and Linear Assignment Problem (LAP) tracker for tracking. However, they do not perform sufficiently when cells are densely arranged. To alleviate the problems mentioned above, we propose an accurate tracking method based on Genetic algorithm (GA) using knowledge of Arabidopsis root cellular patterns and spatial relationship among volumes. Our method can be described as a coarse-to-fine method, in which we first conducted relatively easy line-level tracking of cell nuclei, then performed complicated nuclear tracking based on known linear arrangement of cell files and their spatial relationship between nuclei. Our method has been evaluated on a long-time live imaging dataset of Arabidopsis root tips, and with minor manual rectification, it accurately tracks nuclei. To the best of our knowledge, this research represents the first successful attempt to address a long-standing problem in the field of time-lapse microscopy in the root meristem by proposing an accurate tracking method for Arabidopsis root nuclei.
Related papers
- Cell as Point: One-Stage Framework for Efficient Cell Tracking [54.19259129722988]
We propose a novel end-to-end one-stage framework that reimagines cell tracking by treating Cell as Point.<n>Unlike traditional methods, CAP eliminates the need for explicit detection or segmentation, instead jointly tracking cells for sequences in one stage.<n> CAP demonstrates promising cell tracking performance and is 10 to 55 times more efficient than existing methods.
arXiv Detail & Related papers (2024-11-22T10:16:35Z) - Deep Temporal Sequence Classification and Mathematical Modeling for Cell Tracking in Dense 3D Microscopy Videos of Bacterial Biofilms [18.563062576080704]
We introduce a novel cell tracking algorithm named DenseTrack.
DenseTrack integrates deep learning with mathematical model-based strategies to establish correspondences between consecutive frames.
We present an eigendecomposition-based cell division detection strategy.
arXiv Detail & Related papers (2024-06-27T23:26:57Z) - Cell Graph Transformer for Nuclei Classification [78.47566396839628]
We develop a cell graph transformer (CGT) that treats nodes and edges as input tokens to enable learnable adjacency and information exchange among all nodes.
Poorly features can lead to noisy self-attention scores and inferior convergence.
We propose a novel topology-aware pretraining method that leverages a graph convolutional network (GCN) to learn a feature extractor.
arXiv Detail & Related papers (2024-02-20T12:01:30Z) - Prediction of Cellular Identities from Trajectory and Cell Fate
Information [0.40964539027092917]
We propose an innovative approach to cell identification during early $textitC. elegansgenesis using machine learning.
We employ random forest, embryo, and LSTM models, and tested cell classification accuracy on 3D time-lapse datasets spanning the first 4 hours of embryogenesis.
Our research demonstrates the success of predicting cell identities in time-lapse imaging sequences directly from simple spatial-temporal features.
arXiv Detail & Related papers (2024-01-11T03:28:13Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - Learning Deformable 3D Graph Similarity to Track Plant Cells in
Unregistered Time Lapse Images [17.017730437647977]
We propose a novel learning-based method that exploits the tightly packed three-dimensional cell structure of plant cells to create a three-dimensional graph in order to perform accurate cell tracking.
We demonstrate the efficacy of our algorithm in terms of tracking accuracy and inference-time on a benchmark dataset.
arXiv Detail & Related papers (2023-09-20T09:04:01Z) - DeepRGVP: A Novel Microstructure-Informed Supervised Contrastive
Learning Framework for Automated Identification Of The Retinogeniculate
Pathway Using dMRI Tractography [49.36718605738193]
The retinogeniculate pathway (RGVP) is responsible for carrying visual information from the retina to the lateral geniculate nucleus.
We present what we believe is the first deep learning framework, namely DeepRGVP, to enable fast and accurate identification of the RGVP from dMRI tractography data.
arXiv Detail & Related papers (2022-11-15T13:14:49Z) - Geodesic Sinkhorn for Fast and Accurate Optimal Transport on Manifolds [53.110934987571355]
We propose Geodesic Sinkhorn -- based on a heat kernel on a manifold graph.
We apply our method to the computation of barycenters of several distributions of high dimensional single cell data from patient samples undergoing chemotherapy.
arXiv Detail & Related papers (2022-11-02T00:51:35Z) - Tracking by weakly-supervised learning and graph optimization for
whole-embryo C. elegans lineages [5.4560798878815735]
We build upon a recent method for nuclei tracking that combines weakly-supervised learning from a small set of nuclei center point annotations with an integer linear program (ILP) for optimal cell lineage extraction.
Our work specifically addresses the following challenging properties of C. elegans embryo recordings.
arXiv Detail & Related papers (2022-08-24T12:17:59Z) - Scaling Neural Tangent Kernels via Sketching and Random Features [53.57615759435126]
Recent works report that NTK regression can outperform finitely-wide neural networks trained on small-scale datasets.
We design a near input-sparsity time approximation algorithm for NTK, by sketching the expansions of arc-cosine kernels.
We show that a linear regressor trained on our CNTK features matches the accuracy of exact CNTK on CIFAR-10 dataset while achieving 150x speedup.
arXiv Detail & Related papers (2021-06-15T04:44:52Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
coarse parametrisation in propagation distance, position errors and partial coherence frequently menaces the experiment viability.
A modern Deep Learning framework is used to correct autonomously the setup incoherences, thus improving the quality of a ptychography reconstruction.
We tested our system on both synthetic datasets and also on real data acquired at the TwinMic beamline of the Elettra synchrotron facility.
arXiv Detail & Related papers (2021-05-18T10:15:17Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Cell Segmentation and Tracking using CNN-Based Distance Predictions and
a Graph-Based Matching Strategy [0.20999222360659608]
We present a method for the segmentation of touching cells in microscopy images.
By using a novel representation of cell borders, inspired by distance maps, our method is capable to utilize not only touching cells but also close cells in the training process.
This representation is notably robust to annotation errors and shows promising results for the segmentation of microscopy images containing in the training data underrepresented or not included cell types.
arXiv Detail & Related papers (2020-04-03T11:55:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.