論文の概要: GPMFS: Global Foundation and Personalized Optimization for Multi-Label Feature Selection
- arxiv url: http://arxiv.org/abs/2504.12740v1
- Date: Thu, 17 Apr 2025 08:29:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:38:27.378458
- Title: GPMFS: Global Foundation and Personalized Optimization for Multi-Label Feature Selection
- Title(参考訳): GPMFS:グローバルファンデーションとマルチラベル特徴選択のためのパーソナライズされた最適化
- Authors: Yifan Cao, Zhilong Mi, Ziqiao Yin, Binghui Guo, Jin Dong,
- Abstract要約: 次元性の呪いは、高次元多ラベル学習における主要なボトルネックの1つである。
GPMFS (Global Foundation and Personalized Optimization for Multi-Label Feature Selection) という新しい手法を提案する。
複数の実世界のデータセットの実験により、GPMFSは高い解釈性と堅牢性を維持しながら、優れたパフォーマンスを達成することが示された。
- 参考スコア(独自算出の注目度): 0.820217860574125
- License:
- Abstract: As artificial intelligence methods are increasingly applied to complex task scenarios, high dimensional multi-label learning has emerged as a prominent research focus. At present, the curse of dimensionality remains one of the major bottlenecks in high-dimensional multi-label learning, which can be effectively addressed through multi-label feature selection methods. However, existing multi-label feature selection methods mostly focus on identifying global features shared across all labels, which overlooks personalized characteristics and specific requirements of individual labels. This global-only perspective may limit the ability to capture label-specific discriminative information, thereby affecting overall performance. In this paper, we propose a novel method called GPMFS (Global Foundation and Personalized Optimization for Multi-Label Feature Selection). GPMFS firstly identifies global features by exploiting label correlations, then adaptively supplements each label with a personalized subset of discriminative features using a threshold-controlled strategy. Experiments on multiple real-world datasets demonstrate that GPMFS achieves superior performance while maintaining strong interpretability and robustness. Furthermore, GPMFS provides insights into the label-specific strength across different multi-label datasets, thereby demonstrating the necessity and potential applicability of personalized feature selection approaches.
- Abstract(参考訳): 人工知能の手法が複雑なタスクシナリオにますます適用されていくにつれ、高次元多ラベル学習が顕著な研究対象となっている。
現在、次元性の呪いは高次元多言語学習における主要なボトルネックの1つであり、多言語特徴選択法によって効果的に対処できる。
しかし、既存のマルチラベル機能選択方法は、主に、各ラベルのパーソナライズされた特徴や特定の要求を無視する、すべてのラベル間で共有されるグローバルな特徴を特定することに焦点を当てている。
このグローバルのみの視点は、ラベル固有の識別情報をキャプチャする能力を制限し、それによって全体的なパフォーマンスに影響を与える可能性がある。
本稿では,GPMFS (Global Foundation and Personalized Optimization for Multi-Label Feature Selection) と呼ばれる新しい手法を提案する。
GPMFSはまずラベル相関を利用してグローバルな特徴を識別し、しきい値制御戦略を用いて各ラベルをパーソナライズした識別機能のサブセットで適応的に補完する。
複数の実世界のデータセットの実験により、GPMFSは高い解釈性と堅牢性を維持しながら、優れたパフォーマンスを達成することが示された。
さらに、GPMFSは、異なるマルチラベルデータセットにまたがるラベル固有の強度に関する洞察を提供し、パーソナライズされた特徴選択アプローチの必要性と可能性を示す。
関連論文リスト
- Exploiting Conjugate Label Information for Multi-Instance Partial-Label Learning [61.00359941983515]
MIPL(Multi-instance partial-label Learning)は、各トレーニングサンプルが1つの真のラベルといくつかの偽陽性を含む候補ラベルセットに関連付けられたマルチインスタンスバッグとして表現されるシナリオに対処する。
ELIMIPLは共役ラベル情報を利用して曖昧性を改善する。
論文 参考訳(メタデータ) (2024-08-26T15:49:31Z) - Cross-Modality Clustering-based Self-Labeling for Multimodal Data Classification [2.666791490663749]
CMCSL(Cross-Modality Clustering-based Self-Labeling)
CMCSLは、深い特徴空間の各モードに属するインスタンスをグループ化し、その結果のクラスタ内で既知のラベルを伝搬する。
MM-IMDbデータセットから抽出した20個のデータセットに対する実験的検討
論文 参考訳(メタデータ) (2024-08-05T15:43:56Z) - Embedded Multi-label Feature Selection via Orthogonal Regression [45.55795914923279]
少なくとも2乗回帰に基づく最先端の組込みマルチラベル特徴選択アルゴリズムは、マルチラベルデータに十分な識別情報を保存できない。
複数ラベルの特徴選択を容易にするために, 組込み多ラベル特徴選択法を提案する。
10個の多ラベルデータセットの大規模な実験結果から,GRROORの有効性が示された。
論文 参考訳(メタデータ) (2024-03-01T06:18:40Z) - CARAT: Contrastive Feature Reconstruction and Aggregation for
Multi-Modal Multi-Label Emotion Recognition [18.75994345925282]
マルチモーダルマルチラベル感情認識(MMER)は、複数のモーダルから関連する感情を識別することを目的としている。
MMERの課題は、異種データから複数のラベルの識別機能を効果的に取得する方法である。
本稿では,MMERタスクのためのContrAstive Feature Restruction and AggregaTion(CARAT)を提案する。
論文 参考訳(メタデータ) (2023-12-15T20:58:05Z) - Multi-Label Feature Selection Using Adaptive and Transformed Relevance [0.0]
本稿では,ATRと呼ばれる情報理論に基づく新しい多ラベル特徴選択手法を提案する。
ATRは、個々のラベルと抽象的なラベル空間の識別能力を考慮している。
提案実験は,広範囲な特徴空間とラベル空間を特徴とするベンチマークにおけるATRのスケーラビリティを実証するものである。
論文 参考訳(メタデータ) (2023-09-26T09:01:38Z) - Deep Partial Multi-Label Learning with Graph Disambiguation [27.908565535292723]
grAph-disambIguatioN (PLAIN) を用いた新しいディープ部分多重ラベルモデルを提案する。
具体的には、ラベルの信頼性を回復するために、インスタンスレベルとラベルレベルの類似性を導入する。
各トレーニングエポックでは、ラベルがインスタンスとラベルグラフに伝播し、比較的正確な擬似ラベルを生成する。
論文 参考訳(メタデータ) (2023-05-10T04:02:08Z) - Exploiting Diversity of Unlabeled Data for Label-Efficient
Semi-Supervised Active Learning [57.436224561482966]
アクティブラーニング(英: Active Learning)は、ラベリングのための最も重要なサンプルを選択することで、高価なラベリングの問題に対処する研究分野である。
アクティブな学習環境における初期ラベル付けのための最も情報性の高いサンプル群を選択するために,多様性に基づく新しい初期データセット選択アルゴリズムを提案する。
また、一貫性に基づく埋め込みの多様性に基づくサンプリングを用いた、新しいアクティブな学習クエリ戦略を提案する。
論文 参考訳(メタデータ) (2022-07-25T16:11:55Z) - One Positive Label is Sufficient: Single-Positive Multi-Label Learning
with Label Enhancement [71.9401831465908]
本研究では,SPMLL (Single- positive multi-label learning) について検討した。
ラベルエンハンスメントを用いた単陽性MultIラベル学習という新しい手法を提案する。
ベンチマークデータセットの実験により,提案手法の有効性が検証された。
論文 参考訳(メタデータ) (2022-06-01T14:26:30Z) - Dual-Refinement: Joint Label and Feature Refinement for Unsupervised
Domain Adaptive Person Re-Identification [51.98150752331922]
Unsupervised Domain Adaptive (UDA) Person Re-identification (再ID) は、ターゲットドメインデータのラベルが欠落しているため、難しい作業です。
オフラインクラスタリングフェーズにおける擬似ラベルとオンライントレーニングフェーズにおける特徴を共同で改良する,デュアルリファインメントと呼ばれる新しいアプローチを提案する。
本手法は最先端手法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2020-12-26T07:35:35Z) - SPL-MLL: Selecting Predictable Landmarks for Multi-Label Learning [87.27700889147144]
我々は、入力(予測可能)に応じて予測しやすく、他の可能なラベル(表現可能)をうまく回復できるランドマークとして、ラベルの小さなサブセットを選択することを提案する。
我々は,ADM(Alternating Direction Method)を用いてこの問題を解決する。実世界のデータセットに関する実証研究により,本手法が他の最先端手法よりも優れた分類性能を実現することを示す。
論文 参考訳(メタデータ) (2020-08-16T11:07:44Z) - Unsupervised Person Re-identification via Multi-label Classification [55.65870468861157]
本稿では,教師なしのReIDを多ラベル分類タスクとして定式化し,段階的に真のラベルを求める。
提案手法は,まず,各人物画像に単一クラスラベルを割り当てることから始まり,ラベル予測のために更新されたReIDモデルを活用することで,多ラベル分類へと進化する。
マルチラベル分類におけるReIDモデルのトレーニング効率を高めるために,メモリベースマルチラベル分類損失(MMCL)を提案する。
論文 参考訳(メタデータ) (2020-04-20T12:13:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。