GPMFS: Global Foundation and Personalized Optimization for Multi-Label Feature Selection
- URL: http://arxiv.org/abs/2504.12740v1
- Date: Thu, 17 Apr 2025 08:29:14 GMT
- Title: GPMFS: Global Foundation and Personalized Optimization for Multi-Label Feature Selection
- Authors: Yifan Cao, Zhilong Mi, Ziqiao Yin, Binghui Guo, Jin Dong,
- Abstract summary: The curse of dimensionality remains one of the major bottlenecks in high-dimensional multi-label learning.<n>We propose a novel method called GPMFS (Global Foundation and Personalized Optimization for Multi-Label Feature Selection)<n>Experiments on multiple real-world datasets demonstrate that GPMFS achieves superior performance while maintaining strong interpretability and robustness.
- Score: 0.820217860574125
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As artificial intelligence methods are increasingly applied to complex task scenarios, high dimensional multi-label learning has emerged as a prominent research focus. At present, the curse of dimensionality remains one of the major bottlenecks in high-dimensional multi-label learning, which can be effectively addressed through multi-label feature selection methods. However, existing multi-label feature selection methods mostly focus on identifying global features shared across all labels, which overlooks personalized characteristics and specific requirements of individual labels. This global-only perspective may limit the ability to capture label-specific discriminative information, thereby affecting overall performance. In this paper, we propose a novel method called GPMFS (Global Foundation and Personalized Optimization for Multi-Label Feature Selection). GPMFS firstly identifies global features by exploiting label correlations, then adaptively supplements each label with a personalized subset of discriminative features using a threshold-controlled strategy. Experiments on multiple real-world datasets demonstrate that GPMFS achieves superior performance while maintaining strong interpretability and robustness. Furthermore, GPMFS provides insights into the label-specific strength across different multi-label datasets, thereby demonstrating the necessity and potential applicability of personalized feature selection approaches.
Related papers
- Exploiting Conjugate Label Information for Multi-Instance Partial-Label Learning [61.00359941983515]
Multi-instance partial-label learning (MIPL) addresses scenarios where each training sample is represented as a multi-instance bag associated with a candidate label set containing one true label and several false positives.
ELIMIPL exploits the conjugate label information to improve the disambiguation performance.
arXiv Detail & Related papers (2024-08-26T15:49:31Z) - Cross-Modality Clustering-based Self-Labeling for Multimodal Data Classification [2.666791490663749]
Cross-Modality Clustering-based Self-Labeling ( CMCSL)
CMCSL groups instances belonging to each modality in the deep feature space and then propagates known labels within the resulting clusters.
Experimental evaluation conducted on 20 datasets derived from the MM-IMDb dataset.
arXiv Detail & Related papers (2024-08-05T15:43:56Z) - Embedded Multi-label Feature Selection via Orthogonal Regression [45.55795914923279]
State-of-the-art embedded multi-label feature selection algorithms based on at least square regression cannot preserve sufficient discriminative information in multi-label data.
A novel embedded multi-label feature selection method is proposed to facilitate the multi-label feature selection.
Extensive experimental results on ten multi-label data sets demonstrate the effectiveness of GRROOR.
arXiv Detail & Related papers (2024-03-01T06:18:40Z) - CARAT: Contrastive Feature Reconstruction and Aggregation for
Multi-Modal Multi-Label Emotion Recognition [18.75994345925282]
Multi-modal multi-label emotion recognition (MMER) aims to identify relevant emotions from multiple modalities.
The challenge of MMER is how to effectively capture discriminative features for multiple labels from heterogeneous data.
This paper presents ContrAstive feature Reconstruction and AggregaTion (CARAT) for the MMER task.
arXiv Detail & Related papers (2023-12-15T20:58:05Z) - Multi-Label Feature Selection Using Adaptive and Transformed Relevance [0.0]
This paper presents a novel information-theoretical filter-based multi-label feature selection, called ATR, with a new function.
ATR ranks features considering individual labels as well as abstract label space discriminative powers.
Our experiments affirm the scalability of ATR for benchmarks characterized by extensive feature and label spaces.
arXiv Detail & Related papers (2023-09-26T09:01:38Z) - Deep Partial Multi-Label Learning with Graph Disambiguation [27.908565535292723]
We propose a novel deep Partial multi-Label model with grAph-disambIguatioN (PLAIN)
Specifically, we introduce the instance-level and label-level similarities to recover label confidences.
At each training epoch, labels are propagated on the instance and label graphs to produce relatively accurate pseudo-labels.
arXiv Detail & Related papers (2023-05-10T04:02:08Z) - Exploiting Diversity of Unlabeled Data for Label-Efficient
Semi-Supervised Active Learning [57.436224561482966]
Active learning is a research area that addresses the issues of expensive labeling by selecting the most important samples for labeling.
We introduce a new diversity-based initial dataset selection algorithm to select the most informative set of samples for initial labeling in the active learning setting.
Also, we propose a novel active learning query strategy, which uses diversity-based sampling on consistency-based embeddings.
arXiv Detail & Related papers (2022-07-25T16:11:55Z) - One Positive Label is Sufficient: Single-Positive Multi-Label Learning
with Label Enhancement [71.9401831465908]
We investigate single-positive multi-label learning (SPMLL) where each example is annotated with only one relevant label.
A novel method named proposed, i.e., Single-positive MultI-label learning with Label Enhancement, is proposed.
Experiments on benchmark datasets validate the effectiveness of the proposed method.
arXiv Detail & Related papers (2022-06-01T14:26:30Z) - Dual-Refinement: Joint Label and Feature Refinement for Unsupervised
Domain Adaptive Person Re-Identification [51.98150752331922]
Unsupervised domain adaptive (UDA) person re-identification (re-ID) is a challenging task due to the missing of labels for the target domain data.
We propose a novel approach, called Dual-Refinement, that jointly refines pseudo labels at the off-line clustering phase and features at the on-line training phase.
Our method outperforms the state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2020-12-26T07:35:35Z) - SPL-MLL: Selecting Predictable Landmarks for Multi-Label Learning [87.27700889147144]
We propose to select a small subset of labels as landmarks which are easy to predict according to input (predictable) and can well recover the other possible labels (representative)
We employ the Alternating Direction Method (ADM) to solve our problem. Empirical studies on real-world datasets show that our method achieves superior classification performance over other state-of-the-art methods.
arXiv Detail & Related papers (2020-08-16T11:07:44Z) - Unsupervised Person Re-identification via Multi-label Classification [55.65870468861157]
This paper formulates unsupervised person ReID as a multi-label classification task to progressively seek true labels.
Our method starts by assigning each person image with a single-class label, then evolves to multi-label classification by leveraging the updated ReID model for label prediction.
To boost the ReID model training efficiency in multi-label classification, we propose the memory-based multi-label classification loss (MMCL)
arXiv Detail & Related papers (2020-04-20T12:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.