論文の概要: Universal Approximation with XL MIMO Systems: OTA Classification via Trainable Analog Combining
- arxiv url: http://arxiv.org/abs/2504.12758v1
- Date: Thu, 17 Apr 2025 08:53:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:35:23.536835
- Title: Universal Approximation with XL MIMO Systems: OTA Classification via Trainable Analog Combining
- Title(参考訳): XL MIMOシステムを用いたユニバーサル近似:トレーニング可能なアナログ結合によるOTA分類
- Authors: Kyriakos Stylianopoulos, George C. Alexandropoulos,
- Abstract要約: 適切なアナログ合成成分を持つeXtremely Large (XL) Multi-Input Multiple-Output (MIMO) 無線システムは,フィードフォワードニューラルネットワークと同様に,ユニバーサル関数近似器の特性を示す。
本稿では,従来のデジタル処理やプリプロセッシングを必要とせず,OTA(Over-The-Air)エッジ推論の新たな定式化について述べる。
深層学習手法や従来のEMMと比較して,提案手法は複雑度を桁違いに低減したパー性能を実現し,超低消費電力無線機器に非常に魅力がある。
- 参考スコア(独自算出の注目度): 22.304086107929137
- License:
- Abstract: In this paper, we demonstrate that an eXtremely Large (XL) Multiple-Input Multiple-Output (MIMO) wireless system with appropriate analog combining components exhibits the properties of a universal function approximator, similar to a feedforward neural network. By treating the XL MIMO channel coefficients as the random nodes of a hidden layer, and the receiver's analog combiner as a trainable output layer, we cast the end-to-end system to the Extreme Learning Machine (ELM) framework, leading to a novel formulation for Over-The-Air (OTA) edge inference without requiring traditional digital processing nor pre-processing at the transmitter. Through theoretical analysis and numerical evaluation, we showcase that XL-MIMO-ELM enables near-instantaneous training and efficient classification, suggesting the paradigm shift of beyond massive MIMO systems as neural networks alongside their profound communications role. Compared to deep learning approaches and conventional ELMs, the proposed framework achieves on par performance with orders of magnitude lower complexity, making it highly attractive for ultra low power wireless devices.
- Abstract(参考訳): 本稿では、適切なアナログ合成成分を持つeXtremely Large (XL) Multi-Input Multiple-Output (MIMO)無線システムが、フィードフォワードニューラルネットワークと同様に、ユニバーサル関数近似器の特性を示すことを示す。
隠れ層のランダムノードとしてXL MIMOチャネル係数を扱い、受信者のアナログコンバインダをトレーニング可能な出力層として扱うことにより、極端学習機械(ELM)フレームワークにエンドツーエンドのシステムをキャストし、従来のデジタル処理や送信機での事前処理を必要とせず、OTAエッジ推論の新たな定式化に繋がる。
理論的解析と数値評価により,XL-MIMO-ELMがほぼ即時的な訓練と効率的な分類を可能にしたことを示す。
深層学習手法や従来のEMMと比較して,提案手法は複雑度を桁違いに低減したパー性能を実現し,超低消費電力無線機器に非常に魅力がある。
関連論文リスト
- Random Orthogonalization for Federated Learning in Massive MIMO Systems [85.71432283670114]
大規模マルチインプット・マルチアウトプット(MIMO)無線システムにおいて,フェデレートラーニング(FL)のための新しい通信設計を提案する。
ランダム直交化の主な特徴は、FLの密結合と、チャネル硬化と良好な伝播の2つの特徴から生じる。
我々は、この原理をダウンリンク通信フェーズに拡張し、FLの簡易かつ高効率なモデル放送法を開発する。
論文 参考訳(メタデータ) (2022-10-18T14:17:10Z) - Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks [101.59367762974371]
本稿では,Multi-Input-multiple-output (MIMO)通信システムにおける信号検出について検討する。
パイロット信号が限られているディープニューラルネットワーク(DNN)のトレーニングは困難であり、実用化を妨げている。
我々は、ユニタリ近似メッセージパッシング(UAMP)アルゴリズムを利用して、効率的なメッセージパッシングに基づくベイズ信号検出器を設計する。
論文 参考訳(メタデータ) (2022-10-08T04:32:58Z) - Over-the-Air Split Machine Learning in Wireless MIMO Networks [56.27831295707334]
スプリット機械学習(ML)では、ニューラルネットワーク(NN)の異なるパーティションが異なる計算ノードによって実行される。
通信負担を軽減するため、OAC(Over-the-air calculation)は通信と同時に計算の全てまたは一部を効率的に実装することができる。
論文 参考訳(メタデータ) (2022-10-07T15:39:11Z) - Hybrid Far- and Near-Field Channel Estimation for THz Ultra-Massive MIMO
via Fixed Point Networks [15.498866529344275]
テラヘルツ超大容量多重出力(THz UM-MIMO)は6G無線システムのキーイネーブラーとして想定されている。
我々は適応的複雑性と線形収束保証を備えた効率的なディープラーニングに基づくチャネル推定器を開発した。
アルゴリズムの大きな革新は、任意の深さでニューラルネットワークをモデリングし、ハイブリッドフィールドのチャネル条件に適応しながら、チャネル推定を計算するために固定点を適用することである。
論文 参考訳(メタデータ) (2022-05-10T14:57:56Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
本研究では,モデルベース深層学習(MBDL)に基づく実用的なRSMA受信機の設計を提案する。
MBDL受信機は、符号なしシンボル誤り率(SER)、リンクレベルシミュレーション(LLS)によるスループット性能、平均トレーニングオーバーヘッドの観点から評価される。
その結果,MBDLはCSIRが不完全なSIC受信機よりも優れていた。
論文 参考訳(メタデータ) (2022-05-02T12:23:55Z) - CNN based Channel Estimation using NOMA for mmWave Massive MIMO System [0.0]
本稿では,ハイブリッドアーキテクチャ上に構築されたミリ波(mmWave)系のチャネルを推定するための畳み込みニューラルネットワーク手法を提案する。
まず、受信した信号からチャネルの粗い推定を行う。
数値図は,提案手法が最小二乗推定,最小平均二乗誤差(MMSE)推定を上回り,クラマー・ラオ境界(CRB)に近いことを示す。
論文 参考訳(メタデータ) (2021-08-01T05:33:55Z) - End-to-End Learning for Uplink MU-SIMO Joint Transmitter and
Non-Coherent Receiver Design in Fading Channels [11.182920270301304]
JTRD-Netと呼ばれる新しいエンドツーエンド学習手法が提案され、マルチユーザシングルインプットマルチ出力(MU-SIMO)ジョイントトランスミッタとフェーディングチャネルにおける非コヒーレントレシーバー設計(JTRD)をアップリンクする。
送信側は、マルチユーザー波形設計を担当する並列線形層のグループとしてモデル化されています。
非コヒーレント受信機は、マルチユーザ検出(MUD)機能を提供するために、ディープフィードフォワードニューラルネットワーク(DFNN)によって形成される。
論文 参考訳(メタデータ) (2021-05-04T02:47:59Z) - Deep Denoising Neural Network Assisted Compressive Channel Estimation
for mmWave Intelligent Reflecting Surfaces [99.34306447202546]
本稿では,mmWave IRSシステムに対するディープデノイングニューラルネットワークを用いた圧縮チャネル推定法を提案する。
我々はまず、受信チェーンをほとんど使わず、アップリンクのユーザ-IRSチャネルを推定するハイブリッド・パッシブ/アクティブIRSアーキテクチャを導入する。
完全チャネル行列は、圧縮センシングに基づいて限られた測定値から再構成することができる。
論文 参考訳(メタデータ) (2020-06-03T12:18:57Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
フェデレートラーニング(Federated Learning)は、無線デバイスとのコラボレーションによって、中央サーバでグローバルモデルをトレーニングするための、プライバシ保護のアプローチである。
本稿では,大規模マルチインプット多出力通信システム上でのフェデレーション学習のための圧縮センシング手法を提案する。
論文 参考訳(メタデータ) (2020-03-18T05:56:27Z) - ANN-Based Detection in MIMO-OFDM Systems with Low-Resolution ADCs [0.0]
本稿では,信号検出に使用するLevenberg-Marquardtアルゴリズムを用いて,多層ニューラルネットワーク(ANN)を提案する。
本研究では,受信機におけるチャネル状態情報を知ることなく,データシンボル推定を行うブラインド検出方式を検討する。
論文 参考訳(メタデータ) (2020-01-31T03:38:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。