論文の概要: Over-the-Air Split Machine Learning in Wireless MIMO Networks
- arxiv url: http://arxiv.org/abs/2210.04742v1
- Date: Fri, 7 Oct 2022 15:39:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-11 15:16:57.088379
- Title: Over-the-Air Split Machine Learning in Wireless MIMO Networks
- Title(参考訳): 無線mimoネットワークにおける空中分割機械学習
- Authors: Yuzhi Yang, Zhaoyang Zhang, Yuqing Tian, Zhaohui Yang, Chongwen Huang,
Caijun Zhong, and Kai-Kit Wong
- Abstract要約: スプリット機械学習(ML)では、ニューラルネットワーク(NN)の異なるパーティションが異なる計算ノードによって実行される。
通信負担を軽減するため、OAC(Over-the-air calculation)は通信と同時に計算の全てまたは一部を効率的に実装することができる。
- 参考スコア(独自算出の注目度): 56.27831295707334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In split machine learning (ML), different partitions of a neural network (NN)
are executed by different computing nodes, requiring a large amount of
communication cost. To ease communication burden, over-the-air computation
(OAC) can efficiently implement all or part of the computation at the same time
of communication. Based on the proposed system, the system implementation over
wireless network is introduced and we provide the problem formulation. In
particular, we show that the inter-layer connection in a NN of any size can be
mathematically decomposed into a set of linear precoding and combining
transformations over MIMO channels. Therefore, the precoding matrix at the
transmitter and the combining matrix at the receiver of each MIMO link, as well
as the channel matrix itself, can jointly serve as a fully connected layer of
the NN. The generalization of the proposed scheme to the conventional NNs is
also introduced. Finally, we extend the proposed scheme to the widely used
convolutional neural networks and demonstrate its effectiveness under both the
static and quasi-static memory channel conditions with comprehensive
simulations. In such a split ML system, the precoding and combining matrices
are regarded as trainable parameters, while MIMO channel matrix is regarded as
unknown (implicit) parameters.
- Abstract(参考訳): 分割機械学習(ML)では、ニューラルネットワーク(NN)の異なるパーティションは異なる計算ノードによって実行され、大量の通信コストが要求される。
通信負担を軽減するため、OAC(Over-the-air calculation)は通信と同時に計算の全てまたは一部を効率的に実装することができる。
提案システムに基づいて,無線ネットワーク上でのシステム実装を導入し,問題を定式化する。
特に,任意の大きさのNNにおける層間接続を線形プリコーディングとMIMOチャネル上の変換の集合に数学的に分解可能であることを示す。
したがって、送信機におけるプリコーディング行列と、各MIMOリンクの受信機における合成行列と、チャネル行列自体が、NNの完全に接続された層として共同で機能することができる。
また,提案手法の従来のNNへの一般化も紹介した。
最後に,提案手法を広範に使用される畳み込みニューラルネットワークに拡張し,静的および準静的メモリチャネル条件下での包括的シミュレーションによりその効果を実証する。
このような分割MLシステムでは,MIMOチャネル行列が未知(単純)パラメータであるのに対して,プリコーディングと組み合わせをトレーニング可能なパラメータとみなす。
関連論文リスト
- Neural Network-based OFDM Receiver for Resource Constrained IoT Devices [44.8697473676516]
モノのインターネット(IoT)のための新しいモジュール型機械学習(ML)ベースのレシーバチェーンの設計について検討する。
MLブロックはOFDM受信機の個々の処理ブロックを置換し,従来のチャネル推定,シンボルデマッピング,デコードブロックをニューラルネットワーク(NN)で置き換える。
提案手法は,従来の非MLレシーバのビット誤り率を,シミュレーションとオーバー・ザ・エアで平均61%,10%向上させるものである。
論文 参考訳(メタデータ) (2022-05-12T15:32:35Z) - Channel Estimation Based on Machine Learning Paradigm for Spatial
Modulation OFDM [0.0]
ディープニューラルネットワーク(DNN)は、レイリーフェディングチャネル上のエンドツーエンドデータ検出のための空間変調直交周波数分割多重化(SM-OFDM)技術と統合されている。
提案システムは受信したシンボルを直接復調し,チャネル推定を暗黙的に行う。
論文 参考訳(メタデータ) (2021-09-15T10:54:56Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
そこでは,観測観測のために,既知の基地局とRIS位相制御行列を併用したアップリンクチャネル推定手法を提案する。
推定性能を向上し, トレーニングオーバーヘッドを低減するため, 深部展開法において, mmWaveチャネルの固有チャネル幅を生かした。
提案したディープ・アンフォールディング・ネットワーク・アーキテクチャは,トレーニングオーバーヘッドが比較的小さく,オンライン計算の複雑さも比較的小さく,最小二乗法(LS)法より優れていることが確認された。
論文 参考訳(メタデータ) (2021-07-27T06:57:56Z) - Limited-Fronthaul Cell-Free Hybrid Beamforming with Distributed Deep
Neural Network [0.0]
近接最適解は、アクセスポイント(AP)とネットワークコントローラ(NC)の間で大量の信号交換を必要とする。
本稿では,AP と NC 間の通信オーバーヘッドをゼロあるいは限定して協調ハイブリッドビームフォーミングを行うことができる2つの非教師なしディープニューラルネットワーク(DNN)アーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-06-30T16:42:32Z) - End-to-End Learning for Uplink MU-SIMO Joint Transmitter and
Non-Coherent Receiver Design in Fading Channels [11.182920270301304]
JTRD-Netと呼ばれる新しいエンドツーエンド学習手法が提案され、マルチユーザシングルインプットマルチ出力(MU-SIMO)ジョイントトランスミッタとフェーディングチャネルにおける非コヒーレントレシーバー設計(JTRD)をアップリンクする。
送信側は、マルチユーザー波形設計を担当する並列線形層のグループとしてモデル化されています。
非コヒーレント受信機は、マルチユーザ検出(MUD)機能を提供するために、ディープフィードフォワードニューラルネットワーク(DFNN)によって形成される。
論文 参考訳(メタデータ) (2021-05-04T02:47:59Z) - Joint Deep Reinforcement Learning and Unfolding: Beam Selection and
Precoding for mmWave Multiuser MIMO with Lens Arrays [54.43962058166702]
離散レンズアレイを用いたミリ波マルチユーザマルチインプット多重出力(MU-MIMO)システムに注目が集まっている。
本研究では、DLA を用いた mmWave MU-MIMO システムのビームプリコーディング行列の共同設計について検討する。
論文 参考訳(メタデータ) (2021-01-05T03:55:04Z) - Learning to Beamform in Heterogeneous Massive MIMO Networks [48.62625893368218]
大規模マルチインプット多重出力(MIMO)ネットワークにおいて最適なビームフォーマを見つけることはよく知られている問題である。
本稿では,この問題に対処するための新しい深層学習に基づく論文アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-11-08T12:48:06Z) - Pruning the Pilots: Deep Learning-Based Pilot Design and Channel
Estimation for MIMO-OFDM Systems [8.401473551081748]
本稿では,ニューラルネットワークを用いた共同パイロット設計とダウンリンクチャネル推定手法を提案する。
提案したNNアーキテクチャは、周波数対応のパイロット設計に完全連結層を使用し、線形最小二乗誤差(LMMSE)推定に優れる。
また、トレーニング中に高密度のNN層から少ない有意なニューロンを徐々に刈り取ることにより、効果的なパイロットリダクション手法を提案する。
論文 参考訳(メタデータ) (2020-06-21T13:10:26Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
本稿では,AIIDNN(ディープ・アンフォールディング・ニューラルネット)を一般化した,ディープ・アンフォールディングのためのフレームワークを提案する。
古典的重み付き最小二乗誤差(WMMSE)反復アルゴリズムの構造に基づく効率的なIAIDNNを提案する。
提案したIAIDNNは,計算複雑性を低減した反復WMMSEアルゴリズムの性能を効率よく向上することを示す。
論文 参考訳(メタデータ) (2020-06-15T02:57:57Z) - Model Fusion via Optimal Transport [64.13185244219353]
ニューラルネットワークのための階層モデル融合アルゴリズムを提案する。
これは、不均一な非i.d.データに基づいてトレーニングされたニューラルネットワーク間での"ワンショット"な知識伝達に成功していることを示す。
論文 参考訳(メタデータ) (2019-10-12T22:07:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。