Predicting Stock Prices using Permutation Decision Trees and Strategic Trailing
- URL: http://arxiv.org/abs/2504.12828v2
- Date: Fri, 18 Apr 2025 07:00:06 GMT
- Title: Predicting Stock Prices using Permutation Decision Trees and Strategic Trailing
- Authors: Vishrut Ramraj, Nithin Nagaraj, Harikrishnan N B,
- Abstract summary: We focus on high-frequency data using 5-minute candlesticks for the top 50 stocks listed in the NIFTY 50 index.<n>We implement a trading strategy that aims to buy stocks at lower prices and sell them at higher prices, capitalizing on short-term market fluctuations.
- Score: 2.7309692684728617
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we explore the application of Permutation Decision Trees (PDT) and strategic trailing for predicting stock market movements and executing profitable trades in the Indian stock market. We focus on high-frequency data using 5-minute candlesticks for the top 50 stocks listed in the NIFTY 50 index. We implement a trading strategy that aims to buy stocks at lower prices and sell them at higher prices, capitalizing on short-term market fluctuations. Due to regulatory constraints in India, short selling is not considered in our strategy. The model incorporates various technical indicators and employs hyperparameters such as the trailing stop-loss value and support thresholds to manage risk effectively. Our results indicate that the proposed trading bot has the potential to outperform the market average and yield returns higher than the risk-free rate offered by 10-year Indian government bonds. We trained and tested data on a 60 day dataset provided by Yahoo Finance. Specifically, 12 days for testing and 48 days for training. Our bot based on permutation decision tree achieved a profit of 1.3468 % over a 12-day testing period, where as a bot based on LSTM gave a return of 0.1238 % over a 12-day testing period and a bot based on RNN gave a return of 0.3096 % over a 12-day testing period. All of the bots outperform the buy-and-hold strategy, which resulted in a loss of 2.2508 %.
Related papers
- When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
We have developed a multi-agent AI system called StockAgent, driven by LLMs.
The StockAgent allows users to evaluate the impact of different external factors on investor trading.
It avoids the test set leakage issue present in existing trading simulation systems based on AI Agents.
arXiv Detail & Related papers (2024-07-15T06:49:30Z) - Spatiotemporal Transformer for Stock Movement Prediction [2.792030485253753]
We propose STST, a novel approach using a Spatiotemporal Transformer-LSTM model for stock movement prediction.
Our model obtains accuracies of 63.707 and 56.879 percent against the ACL18 and KDD17 datasets, respectively.
It obtained a minimum of 10.41% higher profit than the S&P500 stock index, with a minimum annualized return of 31.24%.
arXiv Detail & Related papers (2023-05-05T20:30:30Z) - Using a Deep Learning Model to Simulate Human Stock Trader's Methods of Chart Analysis [0.276240219662896]
The proposed scheme looks at stock prices of the previous 600 days and predicts whether the stock price will rise or fall 10% or 20% within the next D days.
Using the proposed method for the Korea market it gave return of 75.36% having Sharpe ratio of 1.57, which far exceeds the market return by 36% and 0.61, respectively.
On the US market it gives total return of 27.17% with Sharpe ratio of 0.61, which outperforms other benchmarks such as NASDAQ, S&P500, DOW JONES index by 17.69% and 0.27, respectively.
arXiv Detail & Related papers (2023-04-28T14:27:18Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Uniswap Liquidity Provision: An Online Learning Approach [49.145538162253594]
Decentralized Exchanges (DEXs) are new types of marketplaces leveraging technology.
One such DEX, Uniswap v3, allows liquidity providers to allocate funds more efficiently by specifying an active price interval for their funds.
This introduces the problem of finding an optimal strategy for choosing price intervals.
We formalize this problem as an online learning problem with non-stochastic rewards.
arXiv Detail & Related papers (2023-02-01T17:21:40Z) - A Game of NFTs: Characterizing NFT Wash Trading in the Ethereum Blockchain [53.8917088220974]
The Non-Fungible Token (NFT) market experienced explosive growth in 2021, with a monthly trade volume reaching $6 billion in January 2022.
Concerns have emerged about possible wash trading, a form of market manipulation in which one party repeatedly trades an NFT to inflate its volume artificially.
We find that wash trading affects 5.66% of all NFT collections, with a total artificial volume of $3,406,110,774.
arXiv Detail & Related papers (2022-12-02T15:03:35Z) - A Stock Trading System for a Medium Volatile Asset using Multi Layer
Perceptron [0.6882042556551609]
We propose a stock trading system having as main core the feed-forward deep neural networks (DNN) to predict the price for the next 30 days of open market.
The results were promising bringing a total profit factor of 3.2% in just one month from a very modest budget of $100.
arXiv Detail & Related papers (2022-01-17T16:08:40Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
This paper aims to capture the movement pattern of stock prices under anomalous circumstances.
We train ARIMA and LSTM models at the single-stock level, industry level, and general market level.
Based on 100 companies' stock prices in the period of 2016 to 2020, the models achieve an average prediction accuracy of 98%.
arXiv Detail & Related papers (2021-09-14T18:50:38Z) - Should You Take Investment Advice From WallStreetBets? A Data-Driven
Approach [37.86739837901986]
Reddit's WallStreetBets (WSB) community has come to prominence in light of its notable role in affecting the stock prices of what are now referred to as meme stocks.
This paper analyses WSB data spanning from January 2019 to April 2021 in order to assess how successful an investment strategy relying on the community's recommendations could have been.
arXiv Detail & Related papers (2021-05-06T14:47:03Z) - REST: Relational Event-driven Stock Trend Forecasting [76.08435590771357]
We propose a relational event-driven stock trend forecasting (REST) framework, which can address the shortcoming of existing methods.
To remedy the first shortcoming, we propose to model the stock context and learn the effect of event information on the stocks under different contexts.
To address the second shortcoming, we construct a stock graph and design a new propagation layer to propagate the effect of event information from related stocks.
arXiv Detail & Related papers (2021-02-15T07:22:09Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
We have explored the relationship between sentiment extracted from financial news and tweets and FTSE100 movements.
The sentiment captured from news headlines could be used as a signal to predict market returns; the same does not apply for volatility.
We developed an accurate classifier for the prediction of market volatility in response to the arrival of new information.
arXiv Detail & Related papers (2020-12-10T01:15:48Z) - Forecasting directional movements of stock prices for intraday trading
using LSTM and random forests [0.0]
We employ random forests and LSTM networks as training methodologies to analyze directional movements of S&P 500 constituent stocks.
We find that the multi-feature setting provides a daily return, prior to transaction costs, of 0.64% using LSTM networks, and 0.54% using random forests.
arXiv Detail & Related papers (2020-04-21T17:35:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.