ConExion: Concept Extraction with Large Language Models
- URL: http://arxiv.org/abs/2504.12915v2
- Date: Tue, 22 Apr 2025 11:11:50 GMT
- Title: ConExion: Concept Extraction with Large Language Models
- Authors: Ebrahim Norouzi, Sven Hertling, Harald Sack,
- Abstract summary: We present an approach for concept extraction from documents using pre-trained large language models (LLMs)<n>Our approach tackles a more challenging task of extracting all present concepts related to the specific domain, not just the important ones.
- Score: 0.6472397166280683
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, an approach for concept extraction from documents using pre-trained large language models (LLMs) is presented. Compared with conventional methods that extract keyphrases summarizing the important information discussed in a document, our approach tackles a more challenging task of extracting all present concepts related to the specific domain, not just the important ones. Through comprehensive evaluations of two widely used benchmark datasets, we demonstrate that our method improves the F1 score compared to state-of-the-art techniques. Additionally, we explore the potential of using prompts within these models for unsupervised concept extraction. The extracted concepts are intended to support domain coverage evaluation of ontologies and facilitate ontology learning, highlighting the effectiveness of LLMs in concept extraction tasks. Our source code and datasets are publicly available at https://github.com/ISE-FIZKarlsruhe/concept_extraction.
Related papers
- High-Performance Few-Shot Segmentation with Foundation Models: An Empirical Study [64.06777376676513]
We develop a few-shot segmentation (FSS) framework based on foundation models.
To be specific, we propose a simple approach to extract implicit knowledge from foundation models to construct coarse correspondence.
Experiments on two widely used datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-09-10T08:04:11Z) - Beyond Relevant Documents: A Knowledge-Intensive Approach for Query-Focused Summarization using Large Language Models [27.90653125902507]
We propose a knowledge-intensive approach that reframes query-focused summarization as a knowledge-intensive task setup.
The retrieval module efficiently retrieves potentially relevant documents from a large-scale knowledge corpus.
The summarization controller seamlessly integrates a powerful large language model (LLM)-based summarizer with a carefully tailored prompt.
arXiv Detail & Related papers (2024-08-19T18:54:20Z) - Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
Concept Bottleneck Models (CBMs) have been proposed to address the 'black-box' problem of deep neural networks.
We propose a novel CBM approach -- called Discover-then-Name-CBM (DN-CBM) -- that inverts the typical paradigm.
Our concept extraction strategy is efficient, since it is agnostic to the downstream task, and uses concepts already known to the model.
arXiv Detail & Related papers (2024-07-19T17:50:11Z) - LEARN: Knowledge Adaptation from Large Language Model to Recommendation for Practical Industrial Application [54.984348122105516]
Llm-driven knowlEdge Adaptive RecommeNdation (LEARN) framework synergizes open-world knowledge with collaborative knowledge.
We propose an Llm-driven knowlEdge Adaptive RecommeNdation (LEARN) framework that synergizes open-world knowledge with collaborative knowledge.
arXiv Detail & Related papers (2024-05-07T04:00:30Z) - Learning to Extract Structured Entities Using Language Models [52.281701191329]
Recent advances in machine learning have significantly impacted the field of information extraction.
We reformulate the task to be entity-centric, enabling the use of diverse metrics.
We contribute to the field by introducing Structured Entity Extraction and proposing the Approximate Entity Set OverlaP metric.
arXiv Detail & Related papers (2024-02-06T22:15:09Z) - Modeling Entities as Semantic Points for Visual Information Extraction
in the Wild [55.91783742370978]
We propose an alternative approach to precisely and robustly extract key information from document images.
We explicitly model entities as semantic points, i.e., center points of entities are enriched with semantic information describing the attributes and relationships of different entities.
The proposed method can achieve significantly enhanced performance on entity labeling and linking, compared with previous state-of-the-art models.
arXiv Detail & Related papers (2023-03-23T08:21:16Z) - Unsupervised Interpretable Basis Extraction for Concept-Based Visual
Explanations [53.973055975918655]
We show that, intermediate layer representations become more interpretable when transformed to the bases extracted with our method.
We compare the bases extracted with our method with the bases derived with a supervised approach and find that, in one aspect, the proposed unsupervised approach has a strength that constitutes a limitation of the supervised one and give potential directions for future research.
arXiv Detail & Related papers (2023-03-19T00:37:19Z) - Revealing Hidden Context Bias in Segmentation and Object Detection
through Concept-specific Explanations [14.77637281844823]
We propose the post-hoc eXplainable Artificial Intelligence method L-CRP to generate explanations that automatically identify and visualize relevant concepts learned, recognized and used by the model during inference as well as precisely locate them in input space.
We verify the faithfulness of our proposed technique by quantitatively comparing different concept attribution methods, and discuss the effect on explanation complexity on popular datasets such as CityScapes, Pascal VOC and MS COCO 2017.
arXiv Detail & Related papers (2022-11-21T13:12:23Z) - CRAFT: Concept Recursive Activation FacTorization for Explainability [5.306341151551106]
CRAFT is a novel approach to identify both "what" and "where" by generating concept-based explanations.
We conduct both human and computer vision experiments to demonstrate the benefits of the proposed approach.
arXiv Detail & Related papers (2022-11-17T14:22:47Z) - CLOP: Video-and-Language Pre-Training with Knowledge Regularizations [43.09248976105326]
Video-and-language pre-training has shown promising results for learning generalizable representations.
We denote such form of representations as structural knowledge, which express rich semantics of multiple granularities.
We propose a Cross-modaL knedgeOwl-enhanced Pre-training (CLOP) method with Knowledge Regularizations.
arXiv Detail & Related papers (2022-11-07T05:32:12Z) - Modeling Multi-Granularity Hierarchical Features for Relation Extraction [26.852869800344813]
We propose a novel method to extract multi-granularity features based solely on the original input sentences.
We show that effective structured features can be attained even without external knowledge.
arXiv Detail & Related papers (2022-04-09T09:44:05Z) - A Joint Learning Approach based on Self-Distillation for Keyphrase
Extraction from Scientific Documents [29.479331909227998]
Keyphrase extraction is the task of extracting a small set of phrases that best describe a document.
Most existing benchmark datasets for the task typically have limited numbers of annotated documents.
We propose a simple and efficient joint learning approach based on the idea of self-distillation.
arXiv Detail & Related papers (2020-10-22T18:36:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.