Cavity-enhanced spectroscopy of individual nuclear spins in a dense bath
- URL: http://arxiv.org/abs/2504.12957v1
- Date: Thu, 17 Apr 2025 14:03:10 GMT
- Title: Cavity-enhanced spectroscopy of individual nuclear spins in a dense bath
- Authors: Alexander Ulanowski, Olivier Kuijpers, Benjamin Merkel, Adrian Holzäpfel, Andreas Reiserer,
- Abstract summary: Echo-based spectroscopy of the superhyperfine interaction of an electronic spin with nuclear spins in its surroundings enables detailed insights into the microscopic magnetic environment of spins in solids.<n>It is an outstanding challenge to resolve individual nuclear spins in a dense bath, in which many of them exhibit a comparable coupling strength.<n>Here, we integrate the emitters into a high-finesse resonator, which allows for strong optical echoes even at very low concentrations.
- Score: 39.58317527488534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Echo-based spectroscopy of the superhyperfine interaction of an electronic spin with nuclear spins in its surroundings enables detailed insights into the microscopic magnetic environment of spins in solids. Still, it is an outstanding challenge to resolve individual nuclear spins in a dense bath, in which many of them exhibit a comparable coupling strength. This simultaneously requires a high spectral resolution and a large signal-to-noise ratio. However, when probing spin ensembles, dipolar interactions between the dopants can lead to a concentration-dependent trade-off between resolution and signal. Here, we fully eliminate this limitation of previous optical-echo-envelope-modulation spectroscopy experiments by integrating the emitters into a high-finesse resonator, which allows for strong optical echoes even at very low concentrations. To demonstrate its potential, the technique is applied to erbium dopants in yttrium-orthosilicate (Er:YSO). Achieving an unprecedented spectral resolution enables precise measurements of the superhyperfine interaction with four of the Y nuclear spins densely surrounding each emitter. The achieved boost of the signal, enabled by the resonator, allows for extending the approach to the lowest concentration possible -- to the level of single dopants, thereby providing a tool for detecting and studying individual nuclear spins. Thus, our technique paves the way for an improved understanding of dense nuclear spin baths in solids.
Related papers
- Quantum Memory Enhanced Multipoint Correlation Spectroscopy for Statistically Polarized NMR [0.0]
We introduce multipoint correlation spectroscopy to enable temporally efficient measurements of statistically polarized samples at the nanoscale with spin ensembles.<n>We achieve single hertz uncertainty in the estimated signal frequency, highlighting the potential applications of the technique for nanoscale nuclear magnetic resonance.
arXiv Detail & Related papers (2025-03-24T17:51:43Z) - A New Bite Into Dark Matter with the SNSPD-Based QROCODILE Experiment [55.46105000075592]
We present the first results from the Quantum Resolution-d Cryogenic Observatory for Dark matter Incident at Low Energy (QROCODILE)<n>The QROCODILE experiment uses a microwire-based superconducting nanowire single-photon detector (SNSPD) as a target and sensor for dark matter scattering and absorption.<n>We report new world-leading constraints on the interactions of sub-MeV dark matter particles with masses as low as 30 keV.
arXiv Detail & Related papers (2024-12-20T19:00:00Z) - Pentacene-Doped Naphthalene for Levitated Optomechanics [0.8192907805418583]
We introduce pentacene-doped naphthalene as a material for diamagnetic levitation, offering compelling applications in matter-wave interferometry and nuclear magnetic resonance.
Pentacene-doped naphthalene offers remarkable polarizability of its nuclear spin ensemble, achieving polarization rates exceeding 80 % at cryogenic temperatures.
arXiv Detail & Related papers (2024-05-22T17:51:54Z) - Hyperpolarisation of nuclear spins: polarisation blockade [0.0]
pulse-based protocols have been shown to efficiently transfer optically induced polarisation of the electron defect spin to surrounding nuclear spins.
We find that whenever polarisation resonances of nuclear spins are near-degenerate with a blocking' spin, which is single spin with stronger off-diagonal coupling to the electronic central spin, they are displaced out of the central resonant region.
arXiv Detail & Related papers (2023-09-07T15:02:54Z) - Electrical readout microwave-free sensing with diamond [0.0]
Photoelectric readout of ground-state cross-relaxation features serves as a method for measuring electron spin resonance spectra of nanoscale electronic environments.
This approach may offer potential solutions for determining spin densities and characterizing local environment.
arXiv Detail & Related papers (2022-01-05T19:40:10Z) - Spin-to-Charge conversion with electrode confinement in diamond [0.0]
The nitrogen-vacancy center in diamond has a wide range of potential applications in quantum metrology, communications and computation.
The key to its use lies in how large the optical spin contrast is and the associated fidelity of spin state readout.
We propose a new mechanism for improving contrast with a spin-to-charge protocol that relies on the use of an external electrode and cryogenic temperatures.
arXiv Detail & Related papers (2021-08-20T07:16:18Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.