QLLM: Do We Really Need a Mixing Network for Credit Assignment in Multi-Agent Reinforcement Learning?
- URL: http://arxiv.org/abs/2504.12961v1
- Date: Thu, 17 Apr 2025 14:07:11 GMT
- Title: QLLM: Do We Really Need a Mixing Network for Credit Assignment in Multi-Agent Reinforcement Learning?
- Authors: Zhouyang Jiang, Bin Zhang, Airong Wei, Zhiwei Xu,
- Abstract summary: Credit assignment has remained a fundamental challenge in multi-agent reinforcement learning (MARL)<n>We propose a novel algorithm, textbfQLLM, which facilitates the automatic construction of credit assignment functions using large language models (LLMs)<n>Extensive experiments conducted on several standard MARL benchmarks demonstrate that the proposed method consistently outperforms existing state-of-the-art baselines.
- Score: 4.429189958406034
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Credit assignment has remained a fundamental challenge in multi-agent reinforcement learning (MARL). Previous studies have primarily addressed this issue through value decomposition methods under the centralized training with decentralized execution paradigm, where neural networks are utilized to approximate the nonlinear relationship between individual Q-values and the global Q-value. Although these approaches have achieved considerable success in various benchmark tasks, they still suffer from several limitations, including imprecise attribution of contributions, limited interpretability, and poor scalability in high-dimensional state spaces. To address these challenges, we propose a novel algorithm, \textbf{QLLM}, which facilitates the automatic construction of credit assignment functions using large language models (LLMs). Specifically, the concept of \textbf{TFCAF} is introduced, wherein the credit allocation process is represented as a direct and expressive nonlinear functional formulation. A custom-designed \textit{coder-evaluator} framework is further employed to guide the generation, verification, and refinement of executable code by LLMs, significantly mitigating issues such as hallucination and shallow reasoning during inference. Extensive experiments conducted on several standard MARL benchmarks demonstrate that the proposed method consistently outperforms existing state-of-the-art baselines. Moreover, QLLM exhibits strong generalization capability and maintains compatibility with a wide range of MARL algorithms that utilize mixing networks, positioning it as a promising and versatile solution for complex multi-agent scenarios.
Related papers
- CSE-SFP: Enabling Unsupervised Sentence Representation Learning via a Single Forward Pass [3.0566617373924325]
Recent advances in pre-trained language models (PLMs) have driven remarkable progress in this field.
We propose CSE-SFP, an innovative method that exploits the structural characteristics of generative models.
We show that CSE-SFP not only produces higher-quality embeddings but also significantly reduces both training time and memory consumption.
arXiv Detail & Related papers (2025-05-01T08:27:14Z) - UC-MOA: Utility-Conditioned Multi-Objective Alignment for Distributional Pareto-Optimality [15.53963063493065]
Reinforcement Learning from Human Feedback (RLHF) has become a cornerstone for aligning large language models with human values.<n>Existing approaches struggle to capture the multi-dimensional, distributional nuances of human preferences.<n>We introduce Utility-Conditioned Multi-Objective Alignment (UC-MOA), a novel framework that overcomes these limitations.
arXiv Detail & Related papers (2025-03-10T09:52:42Z) - Optimizing Value of Learning in Task-Oriented Federated Meta-Learning Systems [10.332182237773818]
A novel metric, metric value of learning (VoL) is introduced to assess the individual training needs across devices.
A task-level weight (TLW) is defined based on task-level considerations and fairness of FML training.
arXiv Detail & Related papers (2025-01-07T00:30:31Z) - Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [49.362750475706235]
Reinforcement Learning (RL) plays a crucial role in aligning large language models with human preferences and improving their ability to perform complex tasks.<n>We introduce Direct Q-function Optimization (DQO), which formulates the response generation process as a Markov Decision Process (MDP) and utilizes the soft actor-critic (SAC) framework to optimize a Q-function directly parameterized by the language model.<n> Experimental results on two math problem-solving datasets, GSM8K and MATH, demonstrate that DQO outperforms previous methods, establishing it as a promising offline reinforcement learning approach for aligning language models.
arXiv Detail & Related papers (2024-10-11T23:29:20Z) - Amortized Bayesian Multilevel Models [9.831471158899644]
Multilevel models (MLMs) are a central building block of the Bayesian workflow.<n>MLMs pose significant computational challenges, often rendering their estimation and evaluation intractable within reasonable time constraints.<n>Recent advances in simulation-based inference offer promising solutions for addressing complex probabilistic models using deep generative networks.<n>We explore a family of neural network architectures that leverage the probabilistic factorization of multilevel models to facilitate efficient neural network training and subsequent near-instant posterior inference on unseen datasets.
arXiv Detail & Related papers (2024-08-23T17:11:04Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - Robust Analysis of Multi-Task Learning Efficiency: New Benchmarks on Light-Weighed Backbones and Effective Measurement of Multi-Task Learning Challenges by Feature Disentanglement [69.51496713076253]
In this paper, we focus on the aforementioned efficiency aspects of existing MTL methods.
We first carry out large-scale experiments of the methods with smaller backbones and on a the MetaGraspNet dataset as a new test ground.
We also propose Feature Disentanglement measure as a novel and efficient identifier of the challenges in MTL.
arXiv Detail & Related papers (2024-02-05T22:15:55Z) - Amortizing intractable inference in large language models [56.92471123778389]
We use amortized Bayesian inference to sample from intractable posterior distributions.
We empirically demonstrate that this distribution-matching paradigm of LLM fine-tuning can serve as an effective alternative to maximum-likelihood training.
As an important application, we interpret chain-of-thought reasoning as a latent variable modeling problem.
arXiv Detail & Related papers (2023-10-06T16:36:08Z) - Residual Q-Networks for Value Function Factorizing in Multi-Agent
Reinforcement Learning [0.0]
We propose a novel concept of Residual Q-Networks (RQNs) for Multi-Agent Reinforcement Learning (MARL)
The RQN learns to transform the individual Q-value trajectories in a way that preserves the Individual-Global-Max criteria (IGM)
The proposed method converges faster, with increased stability and shows robust performance in a wider family of environments.
arXiv Detail & Related papers (2022-05-30T16:56:06Z) - Multi-Agent Reinforcement Learning via Adaptive Kalman Temporal
Difference and Successor Representation [32.80370188601152]
The paper proposes the Multi-Agent Adaptive Kalman Temporal Difference (MAK-TD) framework and its Successor Representation-based variant, referred to as the MAK-SR.
The proposed MAK-TD/SR frameworks consider the continuous nature of the action-space that is associated with high dimensional multi-agent environments.
arXiv Detail & Related papers (2021-12-30T18:21:53Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.