論文の概要: Estimating Optimal Context Length for Hybrid Retrieval-augmented Multi-document Summarization
- arxiv url: http://arxiv.org/abs/2504.12972v1
- Date: Thu, 17 Apr 2025 14:24:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:37:14.363548
- Title: Estimating Optimal Context Length for Hybrid Retrieval-augmented Multi-document Summarization
- Title(参考訳): ハイブリッド検索拡張マルチドキュメント要約のための最適コンテキスト長の推定
- Authors: Adithya Pratapa, Teruko Mitamura,
- Abstract要約: 本稿では,検索拡張システムと,最近の言語モデルでサポートされている長文ウィンドウを組み合わせたハイブリッド手法を提案する。
マルチドキュメント要約タスクの結果は,モデルクラスとサイズにまたがって,本手法の有効性を示す。
- 参考スコア(独自算出の注目度): 5.856976164399712
- License:
- Abstract: Recent advances in long-context reasoning abilities of language models led to interesting applications in large-scale multi-document summarization. However, prior work has shown that these long-context models are not effective at their claimed context windows. To this end, retrieval-augmented systems provide an efficient and effective alternative. However, their performance can be highly sensitive to the choice of retrieval context length. In this work, we present a hybrid method that combines retrieval-augmented systems with long-context windows supported by recent language models. Our method first estimates the optimal retrieval length as a function of the retriever, summarizer, and dataset. On a randomly sampled subset of the dataset, we use a panel of LLMs to generate a pool of silver references. We use these silver references to estimate the optimal context length for a given RAG system configuration. Our results on the multi-document summarization task showcase the effectiveness of our method across model classes and sizes. We compare against length estimates from strong long-context benchmarks such as RULER and HELMET. Our analysis also highlights the effectiveness of our estimation method for very long-context LMs and its generalization to new classes of LMs.
- Abstract(参考訳): 言語モデルの長文推論能力の最近の進歩は、大規模多文書要約に興味深い応用をもたらした。
しかし、以前の研究では、これらの長期コンテキストモデルは、要求されたコンテキストウィンドウでは有効ではないことが示されている。
この目的のために、検索強化システムは効率的で効果的な代替手段を提供する。
しかし、その性能は検索コンテキスト長の選択に非常に敏感である。
本研究では,検索拡張システムと,最近の言語モデルでサポートされている長文ウィンドウを組み合わせたハイブリッド手法を提案する。
提案手法はまず,検索者,要約者,データセットの関数として最適検索長を推定する。
データセットのランダムにサンプリングされたサブセットでは、LCMのパネルを使用して銀の参照プールを生成します。
我々は、これらの銀の基準を用いて、与えられたRAGシステム構成の最適コンテキスト長を推定する。
マルチドキュメント要約タスクの結果は,モデルクラスとサイズにまたがって,本手法の有効性を示す。
我々はRULERやHELMETのような強い長文ベンチマークの長文推定との比較を行った。
また,本手法の長文LMに対する有効性や,新たなLMクラスへの一般化についても検討した。
関連論文リスト
- Does RAG Really Perform Bad For Long-Context Processing? [15.889864680212147]
RetroLMは長文処理のための新しいフレームワークである。
従来の方法とは異なり、RetroLMはKVレベルの検索拡張を採用している。
この枠組みに基づいて,臨界ページの正確な検索を行うための特殊検索器を開発した。
論文 参考訳(メタデータ) (2025-02-17T05:02:25Z) - P-MMEval: A Parallel Multilingual Multitask Benchmark for Consistent Evaluation of LLMs [84.24644520272835]
大きな言語モデル(LLM)は、翻訳、コード生成、推論といったタスクにまたがる様々な多言語機能を示す。
以前の評価では、その範囲を基本自然言語処理(NLP)や、独立した機能固有のタスクに制限することが多かった。
我々は、これらのベンチマークの有用性に関する以前の研究の監視に対処するため、大規模ベンチマークから利用可能な、合理的なベンチマークを選択するパイプラインを提案する。
本稿では,P-MMEvalを提案する。P-MMEval,P-MMEval,P-MMEval,P-MMEval,P-MMEval,P-MMEval。
論文 参考訳(メタデータ) (2024-11-14T01:29:36Z) - Graph of Records: Boosting Retrieval Augmented Generation for Long-context Summarization with Graphs [12.878608250420832]
長文大域要約のためのRAGを強化するために,レコードのテキストグラフ(textbfGoR)を提案する。
RAG のtextitretrieve-then-generate パラダイムに着想を得て,検索したテキストチャンクと対応する LLM 生成応答のエッジを確立することでグラフを構築する。
それら間の複雑な相関関係を明らかにするために、GoRは、テキストトグラフニューラルネットワークと、自己教師型モデルトレーニングのための、精巧に設計されたTextitBERTScoreベースの目的を特徴としている。
論文 参考訳(メタデータ) (2024-10-14T18:34:29Z) - Balancing Diversity and Risk in LLM Sampling: How to Select Your Method and Parameter for Open-Ended Text Generation [60.493180081319785]
本稿では,各復号ステップにおける多様性とリスクのトレードオフを考慮し,トラクションサンプリング手法のキャパシティを推定する体系的手法を提案する。
本研究は,既存のトラクションサンプリング手法を総合的に比較し,パラメータ選択のための実用的なユーザガイドとして機能する。
論文 参考訳(メタデータ) (2024-08-24T14:14:32Z) - Leave No Document Behind: Benchmarking Long-Context LLMs with Extended Multi-Doc QA [71.04146366608904]
長いコンテキストモデリング能力は広く注目を集めており、超コンテキストウィンドウを持つLarge Language Models (LLMs) の出現につながっている。
拡張多文書質問応答(QA)によって現実的なシナリオに整合する新しい長文ベンチマークであるLoongを提案する。
Loong氏は、Spotlight Locating, Comparison, Clustering, Chain of Reasoningという、コンテキスト長の4つのタスクを紹介している。
論文 参考訳(メタデータ) (2024-06-25T09:42:56Z) - LongSkywork: A Training Recipe for Efficiently Extending Context Length in Large Language Models [61.12177317970258]
LongSkyworkは、最大20万のトークンを処理できる、長いコンテキストのLarge Language Modelである。
我々は合成データを作成する2つの新しい方法を開発した。
LongSkyworkは、様々なロングコンテキストベンチマークで優れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-06-02T03:34:41Z) - Long Context is Not Long at All: A Prospector of Long-Dependency Data for Large Language Models [13.091271774417867]
長期コンテキストモデリング機能は、様々なアプリケーションにおいて大きな言語モデル(LLM)にとって重要である。
データマイニングフレームワーク textbfProLong を提案する。
複数のベンチマークに関する総合的な実験は、ProLongが長い依存関係を持つドキュメントを効果的に識別していることを示している。
論文 参考訳(メタデータ) (2024-05-28T07:36:56Z) - Long Context Alignment with Short Instructions and Synthesized Positions [56.1267385315404]
本稿では,ステップスキッピングアライメント(SkipAlign)を紹介する。
これは、Large Language Models(LLMs)の長期コンテキスト機能を強化するために設計された新しい技術である。
ベースモデルとアライメントデータセットを慎重に選択することで、SkipAlignは6Bパラメータだけで最高のパフォーマンスを実現し、LongBenchのGPT-3.5-Turbo-16Kのような強力なベースラインに匹敵する。
論文 参考訳(メタデータ) (2024-05-07T01:56:22Z) - LlamaRec: Two-Stage Recommendation using Large Language Models for
Ranking [10.671747198171136]
ランキングベースレコメンデーション(LlamaRec)のための大規模言語モデルを用いた2段階フレームワークを提案する。
特に,ユーザインタラクション履歴に基づいて候補を検索するために,小規模なシーケンシャルレコメンデータを用いる。
LlamaRecは、推奨パフォーマンスと効率の両方において、データセットの優れたパフォーマンスを一貫して達成している。
論文 参考訳(メタデータ) (2023-10-25T06:23:48Z) - Effective Long-Context Scaling of Foundation Models [90.57254298730923]
最大32,768個のトークンの効率的なコンテキストウィンドウをサポートする長文LLMを提示する。
我々のモデルは、ほとんどの通常のタスクにおいて一貫した改善を達成し、Llama 2よりも長いコンテキストタスクを大幅に改善します。
論文 参考訳(メタデータ) (2023-09-27T21:41:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。