論文の概要: Graph of Records: Boosting Retrieval Augmented Generation for Long-context Summarization with Graphs
- arxiv url: http://arxiv.org/abs/2410.11001v1
- Date: Mon, 14 Oct 2024 18:34:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:04:37.157400
- Title: Graph of Records: Boosting Retrieval Augmented Generation for Long-context Summarization with Graphs
- Title(参考訳): Graph of Records: グラフを用いた長文要約のための検索強化生成
- Authors: Haozhen Zhang, Tao Feng, Jiaxuan You,
- Abstract要約: 長文大域要約のためのRAGを強化するために,レコードのテキストグラフ(textbfGoR)を提案する。
RAG のtextitretrieve-then-generate パラダイムに着想を得て,検索したテキストチャンクと対応する LLM 生成応答のエッジを確立することでグラフを構築する。
それら間の複雑な相関関係を明らかにするために、GoRは、テキストトグラフニューラルネットワークと、自己教師型モデルトレーニングのための、精巧に設計されたTextitBERTScoreベースの目的を特徴としている。
- 参考スコア(独自算出の注目度): 12.878608250420832
- License:
- Abstract: Retrieval-augmented generation (RAG) has revitalized Large Language Models (LLMs) by injecting non-parametric factual knowledge. Compared with long-context LLMs, RAG is considered an effective summarization tool in a more concise and lightweight manner, which can interact with LLMs multiple times using diverse queries to get comprehensive responses. However, the LLM-generated historical responses, which contain potentially insightful information, are largely neglected and discarded by existing approaches, leading to suboptimal results. In this paper, we propose \textit{graph of records} (\textbf{GoR}), which leverages historical responses generated by LLMs to enhance RAG for long-context global summarization. Inspired by the \textit{retrieve-then-generate} paradigm of RAG, we construct a graph by establishing an edge between the retrieved text chunks and the corresponding LLM-generated response. To further uncover the intricate correlations between them, GoR further features a \textit{graph neural network} and an elaborately designed \textit{BERTScore}-based objective for self-supervised model training, enabling seamless supervision signal backpropagation between reference summaries and node embeddings. We comprehensively compare GoR with 12 baselines across four long-context summarization datasets, and the results indicate that our proposed method reaches the best performance e.g., 15\%, 8\%, and 19\% improvement over retrievers w.r.t. Rouge-L, Rouge-1, and Rouge-2 on the WCEP dataset). Extensive experiments further demonstrate the effectiveness of GoR. Code is available at https://github.com/ulab-uiuc/GoR
- Abstract(参考訳): Retrieval-augmented Generation (RAG)は、非パラメトリックな事実知識を注入することによって、LLM(Large Language Models)を再活性化した。
長文LLMと比較して、RAGはより簡潔で軽量な方法で効果的な要約ツールであり、多様なクエリを使って複数回LLMと対話し、包括的な応答を得ることができる。
しかし、潜在的に洞察力のある情報を含むLLM生成履歴応答は、既存のアプローチによって無視され、破棄され、準最適結果をもたらす。
本稿では,LLM が生成した履歴応答を利用して,長期的大域的要約のためのRAG を強化した \textit{graph of records} (\textbf{GoR}) を提案する。
RAG の \textit{retrieve-then-generate} パラダイムに着想を得て,検索したテキストチャンクと対応する LLM 生成応答とのエッジを確立することによってグラフを構築する。
さらに、それら間の複雑な相関関係を明らかにするために、GoRはさらに、‘textit{graph neural network}’と、自己教師付きモデルトレーニングのための念入りに設計された‘textit{BERTScore}ベースの目的を備え、参照サマリとノード埋め込み間のシームレスな監視信号のバックプロパゲーションを可能にする。
我々は,GoRを4つの長文要約データセットにまたがる12のベースラインと総合的に比較し,提案手法がWCEPデータセットのルージュ-L,ルージュ-1,ルージュ-2に比較して,最高の性能,15 %,8 %,19 %の改善を達成したことを示す。
大規模な実験は、さらにGoRの有効性を実証する。
コードはhttps://github.com/ulab-uiuc/GoRで入手できる。
関連論文リスト
- LLM$\times$MapReduce: Simplified Long-Sequence Processing using Large Language Models [73.13933847198395]
本稿では,文書理解を包括的に行うための分割・対数戦略を利用して,長文処理のための学習自由フレームワークを提案する。
提案された LLM$times$MapReduce フレームワークは、ドキュメント全体を LLM が読み取るためにいくつかのチャンクに分割し、中間回答を集約して最終的な出力を生成する。
論文 参考訳(メタデータ) (2024-10-12T03:13:44Z) - MaFeRw: Query Rewriting with Multi-Aspect Feedbacks for Retrieval-Augmented Large Language Models [22.50450558103786]
現実世界のRAGシステムでは、現在のクエリは会話コンテキストからの音声楕円とあいまいな参照を含むことが多い。
本稿では,検索プロセスと生成結果の両方からマルチアスペクトフィードバックを統合することにより,RAG性能を向上させる新しいクエリ書き換え手法MaFeRwを提案する。
2つの対話型RAGデータセットの実験結果から、MaFeRwはベースラインよりも優れた生成指標と安定したトレーニングを達成できることが示された。
論文 参考訳(メタデータ) (2024-08-30T07:57:30Z) - Speculative RAG: Enhancing Retrieval Augmented Generation through Drafting [68.90949377014742]
Speculative RAG(投機的RAG)は、より大規模なジェネラリストLMを利用して、より小さな蒸留専門のLMによって並列に生成された複数のRAGドラフトを効率よく検証するフレームワークである。
提案手法は,より小さな専門家のLMにドラフト作成を委譲することでRAGを加速し,より大きなジェネラリストのLMがドラフトに1回の検証パスを実行する。
PubHealthの従来のRAGシステムと比較して、レイテンシを51%削減しながら、最大12.97%の精度向上を実現している。
論文 参考訳(メタデータ) (2024-07-11T06:50:19Z) - BERGEN: A Benchmarking Library for Retrieval-Augmented Generation [26.158785168036662]
Retrieval-Augmented Generationは、外部知識による大規模言語モデルの拡張を可能にする。
一貫性のないベンチマークは、アプローチを比較し、パイプライン内の各コンポーネントの影響を理解する上で大きな課題となる。
本研究では,RAGを体系的に評価するための基礎となるベストプラクティスと,RAG実験を標準化した再現可能な研究用ライブラリであるBERGENについて検討する。
論文 参考訳(メタデータ) (2024-07-01T09:09:27Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
本稿では,適応推論グラフ展開(DARG)によるLCMの動的評価を導入し,複雑性と多様性を制御した現在のベンチマークを動的に拡張する。
具体的には、まず現在のベンチマークでデータポイントの推論グラフを抽出し、それから推論グラフを摂動させて新しいテストデータを生成する。
このような新しく生成されたテストサンプルは、元のベンチマークと同様の言語的多様性を維持しながら、複雑さのレベルが異なる可能性がある。
論文 参考訳(メタデータ) (2024-06-25T04:27:53Z) - Accelerating Inference of Retrieval-Augmented Generation via Sparse Context Selection [28.15184715270483]
大きな言語モデル (LLM) は、検索によって強化され、堅牢な性能と広範な汎用性を示す。
本稿では,スパースRAGという新しいパラダイムを提案する。
Sparse RAGは、検索したドキュメントを並列にエンコードする。
論文 参考訳(メタデータ) (2024-05-25T11:10:04Z) - RaFe: Ranking Feedback Improves Query Rewriting for RAG [83.24385658573198]
アノテーションを使わずにクエリ書き換えモデルをトレーニングするためのフレームワークを提案する。
公開されているリランカを活用することで、フィードバックはリライトの目的とよく一致します。
論文 参考訳(メタデータ) (2024-05-23T11:00:19Z) - Blended RAG: Improving RAG (Retriever-Augmented Generation) Accuracy with Semantic Search and Hybrid Query-Based Retrievers [0.0]
Retrieval-Augmented Generation (RAG) は、大規模言語モデル (LLM) で文書のプライベートな知識基盤を注入し、生成的Q&A (Question-Answering) システムを構築するための一般的なアプローチである。
本稿では,Vector インデックスや Sparse インデックスなどのセマンティック検索手法をハイブリッドクエリ手法と組み合わせた 'Blended RAG' 手法を提案する。
本研究は,NQ や TREC-COVID などの IR (Information Retrieval) データセットの検索結果の改善と,新たなベンチマーク設定を行う。
論文 参考訳(メタデータ) (2024-03-22T17:13:46Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
InFO-RAG という情報改質訓練手法を提案する。
InFO-RAGは低コストで、様々なタスクにまたがっている。
LLaMA2の性能を平均9.39%向上させる。
論文 参考訳(メタデータ) (2024-02-28T08:24:38Z) - Revisiting Large Language Models as Zero-shot Relation Extractors [8.953462875381888]
リレーショナル抽出(RE)は、ゼロショット設定下であっても、一定のラベル付きまたはラベルなしのデータを一貫して含む。
近年の研究では、大きな言語モデル(LLM)が、単に自然言語のプロンプトを与えられただけで、新しいタスクにうまく移行していることが示されている。
本研究はゼロショット関係抽出器としてLLMを探索することに焦点を当てる。
論文 参考訳(メタデータ) (2023-10-08T06:17:39Z) - Harnessing Explanations: LLM-to-LM Interpreter for Enhanced
Text-Attributed Graph Representation Learning [51.90524745663737]
重要なイノベーションは、機能として説明を使用することで、下流タスクにおけるGNNのパフォーマンス向上に利用できます。
提案手法は、確立されたTAGデータセットの最先端結果を実現する。
本手法はトレーニングを著しく高速化し,ogbn-arxivのベースラインに最も近い2.88倍の改善を実現した。
論文 参考訳(メタデータ) (2023-05-31T03:18:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。