論文の概要: A Phenomenological Approach to Analyzing User Queries in IT Systems Using Heidegger's Fundamental Ontology
- arxiv url: http://arxiv.org/abs/2504.12977v1
- Date: Thu, 17 Apr 2025 14:29:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:39:39.054529
- Title: A Phenomenological Approach to Analyzing User Queries in IT Systems Using Heidegger's Fundamental Ontology
- Title(参考訳): Heideggerの基本オントロジーを用いたITシステムにおけるユーザクエリ分析のための現象論的アプローチ
- Authors: Maksim Vishnevskiy,
- Abstract要約: 本稿では,Martin Heidegger氏の基本オントロジーに基づく新しい分析ITシステムを提案する。
このシステムでは、ユーザー入力を処理するための存在の分類言語と、内部分析のための存在の実在言語という、2つの異なる記述的完備な言語が採用されている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper presents a novel research analytical IT system grounded in Martin Heidegger's Fundamental Ontology, distinguishing between beings (das Seiende) and Being (das Sein). The system employs two modally distinct, descriptively complete languages: a categorical language of beings for processing user inputs and an existential language of Being for internal analysis. These languages are bridged via a phenomenological reduction module, enabling the system to analyze user queries (including questions, answers, and dialogues among IT specialists), identify recursive and self-referential structures, and provide actionable insights in categorical terms. Unlike contemporary systems limited to categorical analysis, this approach leverages Heidegger's phenomenological existential analysis to uncover deeper ontological patterns in query processing, aiding in resolving logical traps in complex interactions, such as metaphor usage in IT contexts. The path to full realization involves formalizing the language of Being by a research team based on Heidegger's Fundamental Ontology; given the existing completeness of the language of beings, this reduces the system's computability to completeness, paving the way for a universal query analysis tool. The paper presents the system's architecture, operational principles, technical implementation, use cases--including a case based on real IT specialist dialogues--comparative evaluation with existing tools, and its advantages and limitations.
- Abstract(参考訳): 本稿では,マルティン・ハイデッガー(Martin Heidegger)の「基本オントロジー」を基盤とした,人間(das Seiende)と存在(das Sein)を区別した新しい研究分析ITシステムを提案する。
このシステムでは、ユーザー入力を処理するための存在の分類言語と、内部分析のための存在の実在言語という、2つの異なる記述的完備な言語が採用されている。
これらの言語は、表現論的リダクションモジュールを介してブリッジされ、システムがユーザクエリ(質問、回答、ITスペシャリスト間の対話を含む)を分析し、再帰的かつ自己参照的な構造を特定し、カテゴリ用語で実行可能な洞察を提供する。
カテゴリー分析に限られる現代のシステムとは異なり、このアプローチはHeideggerの現象学的存在分析を利用して、クエリ処理における深い存在論的パターンを解明し、ITコンテキストにおけるメタファの使用のような複雑な相互作用における論理的トラップの解決を支援する。
完全な実現への道のりは、ハイデッガーの基本オントロジーに基づく研究チームによる「存在」の言語を形式化することである。
本稿では、実際のIT専門家の対話に基づくケースを含むシステムのアーキテクチャ、運用原則、技術的実装、ユースケースについて、既存ツールとの比較評価、その利点と限界について述べる。
関連論文リスト
- Engineering Conversational Search Systems: A Review of Applications, Architectures, and Functional Components [4.262342157729123]
本研究では,対話型検索システムの理論的研究と技術的実装の関連について検討する。
階層型アーキテクチャフレームワークを提案し,対話型検索システムの中核機能について説明する。
我々は,大規模言語モデルの急速な進歩を踏まえ,その能力,限界,今後の研究の方向性について考察する。
論文 参考訳(メタデータ) (2024-07-01T06:24:11Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
オンロジはドメインの知識とメタデータを表現するために広く使われている。
直接支援できる論理的推論は、学習、近似、予測において非常に限られています。
1つの簡単な解決策は、統計分析と機械学習を統合することである。
論文 参考訳(メタデータ) (2024-06-16T14:49:19Z) - A Note on an Inferentialist Approach to Resource Semantics [48.65926948745294]
「推論主義」とは、推論行動の観点で意味が与えられるという考え方である。
本稿では,「推論主義」が資源意味論の汎用的で表現力豊かな枠組みを実現する方法を示す。
論文 参考訳(メタデータ) (2024-05-10T14:13:21Z) - Inferentialist Resource Semantics [48.65926948745294]
本稿では,リソースセマンティクスにおいて,推論が汎用的で表現力豊かなフレームワークを実現する方法を示す。
推論主義は、バンドルインプリケーションの論理のアサーションベースのアプローチをいかにシームレスに組み込むか。
この統合により、直感的で親しみやすい方法で、共有リソースと分離リソースの推論が可能になる。
論文 参考訳(メタデータ) (2024-02-14T14:54:36Z) - An Encoding of Abstract Dialectical Frameworks into Higher-Order Logic [57.24311218570012]
このアプローチは抽象弁証法フレームワークのコンピュータ支援分析を可能にする。
応用例としては、メタ理論的性質の形式的解析と検証がある。
論文 参考訳(メタデータ) (2023-12-08T09:32:26Z) - Feature Interactions Reveal Linguistic Structure in Language Models [2.0178765779788495]
本研究では,ポストホック解釈における特徴帰属手法の文脈における特徴的相互作用について検討した。
私たちは、正規言語分類タスクで完璧にモデルをトレーニングする灰色のボックスの方法論を開発します。
特定の構成下では、いくつかの手法が実際にモデルが獲得した文法規則を明らかにすることができることを示す。
論文 参考訳(メタデータ) (2023-06-21T11:24:41Z) - O-Dang! The Ontology of Dangerous Speech Messages [53.15616413153125]
O-Dang!:The Ontology of Dangerous Speech Messages, a systematic and interoperable Knowledge Graph (KG)
O-Dang!は、Lingguistic Linked Open Dataコミュニティで共有されている原則に従って、イタリアのデータセットを構造化されたKGにまとめ、整理するように設計されている。
ゴールド・スタンダードとシングル・アノテータのラベルをKGにエンコードするモデルを提供する。
論文 参考訳(メタデータ) (2022-07-13T11:50:05Z) - A New Neural Search and Insights Platform for Navigating and Organizing
AI Research [56.65232007953311]
我々は、古典的なキーワード検索とニューラル検索を組み合わせた新しいプラットフォームであるAI Research Navigatorを導入し、関連する文献を発見し整理する。
本稿では,システム全体のアーキテクチャの概要と,文書分析,質問応答,検索,分析,専門家検索,レコメンデーションの構成要素について概説する。
論文 参考訳(メタデータ) (2020-10-30T19:12:25Z) - Natural language technology and query expansion: issues,
state-of-the-art and perspectives [0.0]
クエリのあいまいさや誤解釈を引き起こす言語特性と、追加の要因は、ユーザの情報ニーズを正確に表現する能力に影響を与える。
汎用言語に基づく問合せ拡張フレームワークの解剖学を概説し,モジュールに基づく分解を提案する。
それぞれのモジュールについて、文献における最先端のソリューションをレビューし、使用するテクニックの光の下で分類する。
論文 参考訳(メタデータ) (2020-04-23T11:39:07Z) - Exploring Probabilistic Soft Logic as a framework for integrating
top-down and bottom-up processing of language in a task context [0.6091702876917279]
このアーキテクチャは既存のNLPコンポーネントを統合し、8段階の言語モデリングの候補分析を生成する。
このアーキテクチャは、形式レベルでの表現形式としてUniversal Dependencies (UD) と、学習者回答のセマンティックな分析を表現するための抽象的意味表現 (AMR) に基づいて構築されている。
論文 参考訳(メタデータ) (2020-04-15T11:00:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。