論文の概要: Chain-of-Thought Prompting for Out-of-Distribution Samples: A Latent-Variable Study
- arxiv url: http://arxiv.org/abs/2504.12991v1
- Date: Thu, 17 Apr 2025 14:59:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:36:01.045152
- Title: Chain-of-Thought Prompting for Out-of-Distribution Samples: A Latent-Variable Study
- Title(参考訳): ディストリビューション・サンプルのチェーン・オブ・トウト・プロンプト : 潜時変動研究
- Authors: Yu Wang, Fu-Chieh Chang, Pei-Yuan Wu,
- Abstract要約: CoT(Chain-of-Thought)プロンプトは、大規模言語モデルにおけるコンテキスト内学習を改善するための強力なテクニックとして登場した。
我々は、CoTの潜在変数フレームワークを拡張し、その振る舞いを2つのオフ・オブ・ディストリビューション(OOD)シナリオで研究する。
実験により, 潜伏変数がトレーニング中に見られるものとよく似ているOODサンプルに対して, CoT推論が効果的に一般化することを示したが, この類似性が低下すると性能が低下する。
- 参考スコア(独自算出の注目度): 5.236910203359897
- License:
- Abstract: Chain-of-Thought (CoT) prompting has emerged as a powerful technique to improve in-context learning (ICL) in large language models (LLMs) by breaking complex reasoning into intermediate steps. However, the ability of CoT to generalize under distribution shift remains poorly understood. In this work, we extend a latent-variable framework for CoT prompting and study its behavior on two prototypical out-of-distribution (OOD) scenarios: (i) the latent variables for CoT steps are permuted into novel combinations, and (ii) the latent variables uniformly scaled by a factor. Our experiments demonstrate that CoT inference generalizes effectively to OOD samples whose latent variables closely resemble those seen during training, but its performance degrades as this similarity decreases. These findings provide foundational insights into the strengths and limitations of CoT prompting under OOD conditions and suggest directions for developing more resilient reasoning strategies in future LLMs.
- Abstract(参考訳): CoT(Chain-of-Thought)プロンプトは、複雑な推論を中間ステップに分割することで、大規模言語モデル(LLM)における文脈内学習(ICL)を改善する強力な手法として登場した。
しかし、分布シフト下でのCoTの一般化能力は未だよく分かっていない。
本研究では、CoTの潜在変数フレームワークを拡張し、その振る舞いを2つの原型アウト・オブ・ディストリビューション(OOD)シナリオで研究する。
i)CoTステップの潜伏変数は、新しい組み合わせに置換され、
(ii)因子によって一様にスケールされた潜伏変数。
実験により, 潜伏変数がトレーニング中に見られるものとよく似ているOODサンプルに対して, CoT推論が効果的に一般化することを示したが, この類似性が低下すると性能は低下する。
これらの知見は,COTの強度と限界に関する基礎的な洞察を与え,今後のLCMにおいてより弾力性のある推論戦略を開発するための方向性を示唆している。
関連論文リスト
- Unveiling the Mechanisms of Explicit CoT Training: How Chain-of-Thought Enhances Reasoning Generalization [9.191236388401226]
高品質なChain-of-Thought(CoT)アノテーションを用いた大規模言語モデルのトレーニングが広く採用されている。
我々は,CoT を用いたトレーニングにより推論の一般化が著しく改善され,ID とout-of-distriion (OOD) の両方のシナリオに拡張され,収束のスピードが向上することを示した。
本研究は, 明示的CoTトレーニングの基盤となるメカニズムを解明し, 堅牢な一般化を実現するため, LLMのチューニング戦略に対する重要な洞察を提供するものである。
論文 参考訳(メタデータ) (2025-02-07T05:21:13Z) - Rethinking Chain-of-Thought from the Perspective of Self-Training [10.722453877596998]
思考の連鎖(CoT)推論はLLMの潜在能力を活性化するための効果的なアプローチとして現れている。
推論性能を改善するための新しいCoTフレームワークを提案する。
本フレームワークは,初期推論プロセスを最適化するタスク固有のプロンプトモジュールと,動的に推論プロセスを洗練させる適応推論モジュールの2つの重要なコンポーネントを統合する。
論文 参考訳(メタデータ) (2024-12-14T13:12:50Z) - From Sparse Dependence to Sparse Attention: Unveiling How Chain-of-Thought Enhances Transformer Sample Efficiency [17.612497960364916]
CoT(Chain-of-Thought)は大規模言語モデル(LLM)の推論性能を著しく向上させる
代表電力が十分である場合でも,CoTは試料効率を大幅に向上できることを示す。
CoTは入力トークン間のスパース依存関係を導入して学習プロセスを単純化し、スパースかつ解釈可能な注意を喚起することを示す。
論文 参考訳(メタデータ) (2024-10-07T19:45:09Z) - Unveiling the Statistical Foundations of Chain-of-Thought Prompting Methods [59.779795063072655]
CoT(Chain-of-Thought)の促進とその変種は、多段階推論問題を解決する効果的な方法として人気を集めている。
統計的推定の観点からCoTのプロンプトを解析し,その複雑さを包括的に評価する。
論文 参考訳(メタデータ) (2024-08-25T04:07:18Z) - Contrastive Learning Via Equivariant Representation [19.112460889771423]
CLeVERは,任意の複雑性の増大戦略に適合する,新しい異種コントラスト学習フレームワークである。
実験結果から,CLeVERは実用自然画像から同変情報を効果的に抽出し,組み込んだ。
論文 参考訳(メタデータ) (2024-06-01T01:53:51Z) - ChainLM: Empowering Large Language Models with Improved Chain-of-Thought Prompting [124.69672273754144]
CoT(Chain-of-Thought)のプロンプトにより,大規模言語モデル(LLM)の推論能力が向上する
既存のCoTアプローチは通常、単純な推論タスクに重点を置いており、結果として低品質で一貫性のないCoTプロンプトをもたらす。
優れたCoTプロンプトの自動生成のための新しいフレームワークであるCoTGeniusを紹介する。
論文 参考訳(メタデータ) (2024-03-21T11:34:26Z) - Enhancing Chain-of-Thoughts Prompting with Iterative Bootstrapping in Large Language Models [81.01397924280612]
大規模言語モデル (LLM) は、ステップ・バイ・ステップ・チェーン・オブ・シークレット (CoT) をデモンストレーションとして組み込むことで、様々な推論タスクにおいて高い効果的な性能を達成することができる。
本稿では,イターCoT (Iterative bootstrapping in Chain-of-Thoughts Prompting) を導入する。
論文 参考訳(メタデータ) (2023-04-23T13:54:39Z) - Towards Understanding Chain-of-Thought Prompting: An Empirical Study of
What Matters [82.84696222087396]
CoT(Chain-of-Thought)の促進により,大規模言語モデル(LLM)の多段階推論能力が劇的に向上する
無効な実演でもCoT推論が可能であることを示す。
論文 参考訳(メタデータ) (2022-12-20T05:20:54Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - Generalization Properties of Optimal Transport GANs with Latent
Distribution Learning [52.25145141639159]
本研究では,潜伏分布とプッシュフォワードマップの複雑さの相互作用が性能に与える影響について検討する。
我々の分析に感銘を受けて、我々はGANパラダイム内での潜伏分布とプッシュフォワードマップの学習を提唱した。
論文 参考訳(メタデータ) (2020-07-29T07:31:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。