論文の概要: Design Topological Materials by Reinforcement Fine-Tuned Generative Model
- arxiv url: http://arxiv.org/abs/2504.13048v1
- Date: Thu, 17 Apr 2025 16:05:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:35:51.106853
- Title: Design Topological Materials by Reinforcement Fine-Tuned Generative Model
- Title(参考訳): 強化微調整生成モデルによる設計トポロジー材料
- Authors: Haosheng Xu, Dongheng Qian, Zhixuan Liu, Yadong Jiang, Jing Wang,
- Abstract要約: トポロジカル絶縁体(TI)とトポロジカル結晶絶縁体(TCI)は、非伝統的な電子的性質を持つ材料である。
生成モデルによる新しいトポロジカル材料の生成に焦点を当てる。
事前学習した生成モデルに強化微調整を適用し, モデル目標と材料設計目標を一致させる。
- 参考スコア(独自算出の注目度): 4.529476797684622
- License:
- Abstract: Topological insulators (TIs) and topological crystalline insulators (TCIs) are materials with unconventional electronic properties, making their discovery highly valuable for practical applications. However, such materials, particularly those with a full band gap, remain scarce. Given the limitations of traditional approaches that scan known materials for candidates, we focus on the generation of new topological materials through a generative model. Specifically, we apply reinforcement fine-tuning (ReFT) to a pre-trained generative model, thereby aligning the model's objectives with our material design goals. We demonstrate that ReFT is effective in enhancing the model's ability to generate TIs and TCIs, with minimal compromise on the stability of the generated materials. Using the fine-tuned model, we successfully identify a large number of new topological materials, with Ge$_2$Bi$_2$O$_6$ serving as a representative example--a TI with a full band gap of 0.26 eV, ranking among the largest known in this category.
- Abstract(参考訳): トポロジカル絶縁体 (TI) とトポロジカル結晶絶縁体 (TCI) は、非伝統的な電子特性を持つ材料であり、その発見は実用上非常に貴重である。
しかし、このような素材、特にバンドギャップの広い素材は依然として不足している。
候補者の既知の物質をスキャンする従来の手法の限界を考えると、生成モデルによる新しいトポロジカル材料の生成に焦点を当てる。
具体的には、事前訓練された生成モデルに強化微調整(Regressment fine-tuning, ReFT)を適用し、モデルの目的は材料設計の目標と一致させる。
ReFT は, TI および TCI の生成能力の向上に有効であり, 生成した材料の安定性を最小限に抑えることができることを示す。
微調整モデルを用いて,Ge$2$Bi$_2$O$_6$を代表例とする多数の新しいトポロジー材料を同定した。
関連論文リスト
- Efficient Symmetry-Aware Materials Generation via Hierarchical Generative Flow Networks [52.13486402193811]
新しい固体材料は、結晶構造の広大な空間を急速に探索し、安定した領域を探索する必要がある。
既存の手法では、大きな材料空間を探索し、望ましい特性と要求を持った多様なサンプルを生成するのに苦労している。
本研究では, 材料空間の対称性を効果的に活用し, 所望の特性を持つ結晶構造を生成するために, 階層的探索戦略を用いた新しい生成モデルを提案する。
論文 参考訳(メタデータ) (2024-11-06T23:53:34Z) - Fine-Tuning and Deploying Large Language Models Over Edges: Issues and Approaches [64.42735183056062]
大規模言語モデル(LLM)は、特殊モデルから多目的基礎モデルへと移行してきた。
LLMは印象的なゼロショット能力を示すが、ローカルデータセットとデプロイメントのための重要なリソースを微調整する必要がある。
論文 参考訳(メタデータ) (2024-08-20T09:42:17Z) - Structural Constraint Integration in Generative Model for Discovery of Quantum Material Candidates [27.416978540039878]
遺伝子モデル(SCIGEN)における構造制約の統合について紹介する。
プロトタイプの制約としてアルキメデス格子を用いて800万の化合物を生成し, 10%以上の安定性が維持されている。
量子材料の性質は幾何学的パターンと密接に関連しているため、SCIGENは量子材料候補を生成するための一般的な枠組みを提供することを示す。
論文 参考訳(メタデータ) (2024-07-05T14:42:54Z) - Fine-Tuned Language Models Generate Stable Inorganic Materials as Text [57.01994216693825]
テキストエンコードされた原子構造データに基づく微調整された大規模言語モデルは、実装が簡単で信頼性が高い。
我々の最強モデルは、CDVAEの約2倍の速度で準安定であると予測された物質を生成することができる。
テキストプロンプト固有の柔軟性のため、我々のモデルは安定物質を無条件に生成するために同時に使用することができる。
論文 参考訳(メタデータ) (2024-02-06T20:35:28Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
我々は任意の結晶構造(ユニマット)を表現できる統一された結晶表現を開発する。
UniMatはより大型で複雑な化学系から高忠実度結晶構造を生成することができる。
材料の生成モデルを評価するための追加指標を提案する。
論文 参考訳(メタデータ) (2023-10-18T15:49:39Z) - DA-VEGAN: Differentiably Augmenting VAE-GAN for microstructure
reconstruction from extremely small data sets [110.60233593474796]
DA-VEGANは2つの中心的なイノベーションを持つモデルである。
$beta$-variational autoencoderはハイブリッドGANアーキテクチャに組み込まれている。
このアーキテクチャに特化して、独自の差別化可能なデータ拡張スキームが開発されている。
論文 参考訳(メタデータ) (2023-02-17T08:49:09Z) - Physics Guided Generative Adversarial Networks for Generations of
Crystal Materials with Symmetry Constraints [9.755053639966185]
新たな材料生成のための物理ガイド結晶生成モデル(PGCGM)を提案する。
物質の塩基性原子サイトを増大させることで、20個の空間群からなる新しい物質を生成できる。
本手法により, 発電機の有効性は, ベースラインの8倍に向上する。
論文 参考訳(メタデータ) (2022-03-27T17:21:36Z) - A Binded VAE for Inorganic Material Generation [0.0]
本研究では,分散データセットの生成に適したBinded-VAEモデルを構築した。
本稿では, ゴム化合物設計の問題点として, 提案手法が標準生成モデルより優れていることを挙げる。
論文 参考訳(メタデータ) (2021-12-17T15:24:28Z) - How to See Hidden Patterns in Metamaterials with Interpretable Machine
Learning [82.67551367327634]
我々は,材料単位セルのパターンを見つけるための,解釈可能な多分解能機械学習フレームワークを開発した。
具体的には、形状周波数特徴と単位セルテンプレートと呼ばれるメタマテリアルの2つの新しい解釈可能な表現を提案する。
論文 参考訳(メタデータ) (2021-11-10T21:19:02Z) - Intelligent multiscale simulation based on process-guided composite
database [0.0]
本稿では、プロセスモデリング、材料均質化、機械学習に基づく統合データ駆動モデリングフレームワークを提案する。
我々は, 自動車, 航空宇宙, エレクトロニクス産業において重要な材料システムとして認識されてきた, 射出成形した短繊維強化複合材料に興味を持っている。
論文 参考訳(メタデータ) (2020-03-20T20:39:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。