Feedforward suppression of readout-induced faults in quantum error correction
- URL: http://arxiv.org/abs/2504.13083v2
- Date: Tue, 22 Apr 2025 12:13:31 GMT
- Title: Feedforward suppression of readout-induced faults in quantum error correction
- Authors: Liran Shirizly, Dekel Meirom, Malcolm Carroll, Haggai Landa,
- Abstract summary: Method consists of an adaptive readout sequence conditioned on each check qubit's readout result from the previous cycle.<n>For readout errors, correlated preparation errors and measurement-induced leakage that are stronger in a particular qubit state, this feedforward protocol can suppress the physical qubit errors.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a method to reduce readout-induced faults, applicable in settings like quantum error correction with repeated measurement cycles. The method consists of an adaptive readout sequence conditioned on each check qubit's readout result from the previous cycle. For readout errors, correlated preparation errors and measurement-induced leakage that are stronger in a particular qubit state, this feedforward protocol can suppress the physical qubit errors. Focusing on a simple realization of conditionally flipping (by an X gate) the state of check qubits before their measurement, we investigate the effect of such state-dependent errors using simulations in the setup of a low-density parity check code. We show that the suggested protocol can reduce both logical errors and decoding time, two important aspects of fault-tolerant quantum computations.
Related papers
- A Coin Has Two Sides: A Novel Detector-Corrector Framework for Chinese Spelling Correction [79.52464132360618]
Chinese Spelling Correction (CSC) stands as a foundational Natural Language Processing (NLP) task.
We introduce a novel approach based on error detector-corrector framework.
Our detector is designed to yield two error detection results, each characterized by high precision and recall.
arXiv Detail & Related papers (2024-09-06T09:26:45Z) - Quasi-Probabilistic Readout Correction of Mid-Circuit Measurements for Adaptive Feedback via Measurement Randomized Compiling [7.804530685405802]
Quantum measurements are a fundamental component of quantum computing.<n>On modern-day quantum computers, measurements can be more error prone than quantum gates.<n>We show that measurement errors can be tailored into a simple error model using randomized compiling.
arXiv Detail & Related papers (2023-12-21T18:57:13Z) - Compilation of a simple chemistry application to quantum error correction primitives [44.99833362998488]
We estimate the resources required to fault-tolerantly perform quantum phase estimation on a minimal chemical example.
We find that implementing even a simple chemistry circuit requires 1,000 qubits and 2,300 quantum error correction rounds.
arXiv Detail & Related papers (2023-07-06T18:00:10Z) - Minimizing readout-induced noise for early fault-tolerant quantum computers [0.0]
We present a different method for syndrome extraction, namely Generalized Syndrome Measurement.
We can detect the error in the logical state with minimized readout-induced noise.
We numerically analyze the performance of our protocol using Iceberg code and Steane code.
arXiv Detail & Related papers (2023-04-23T04:16:26Z) - Measurement based estimator scheme for continuous quantum error
correction [52.77024349608834]
Canonical discrete quantum error correction (DQEC) schemes use projective von Neumann measurements on stabilizers to discretize the error syndromes into a finite set.
Quantum error correction (QEC) based on continuous measurement, known as continuous quantum error correction (CQEC), can be executed faster than DQEC and can also be resource efficient.
We show that by constructing a measurement-based estimator (MBE) of the logical qubit to be protected, it is possible to accurately track the errors occurring on the physical qubits in real time.
arXiv Detail & Related papers (2022-03-25T09:07:18Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Mitigation of Crosstalk Errors in a Quantum Measurement and Its
Applications [1.433758865948252]
We present a framework for mitigating measurement errors, for both individual and crosstalk errors.
The mitigation protocol is realized in IBMQ Sydney and applied to the certification of entanglement-generating circuits.
arXiv Detail & Related papers (2021-12-20T16:20:49Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Experimental demonstration of continuous quantum error correction [0.0]
We implement a continuous quantum bit-flip correction code in a multi-qubit architecture.
We achieve an average bit-flip detection efficiency of up to 91%.
Our results showcase resource-efficient stabilizer measurements in a multi-qubit architecture.
arXiv Detail & Related papers (2021-07-23T18:00:55Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - Deterministic correction of qubit loss [48.43720700248091]
Loss of qubits poses one of the fundamental obstacles towards large-scale and fault-tolerant quantum information processors.
We experimentally demonstrate the implementation of a full cycle of qubit loss detection and correction on a minimal instance of a topological surface code.
arXiv Detail & Related papers (2020-02-21T19:48:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.