論文の概要: EventVAD: Training-Free Event-Aware Video Anomaly Detection
- arxiv url: http://arxiv.org/abs/2504.13092v1
- Date: Thu, 17 Apr 2025 16:59:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:36:37.932882
- Title: EventVAD: Training-Free Event-Aware Video Anomaly Detection
- Title(参考訳): EventVAD: トレーニング不要なイベント対応ビデオ異常検出
- Authors: Yihua Shao, Haojin He, Sijie Li, Siyu Chen, Xinwei Long, Fanhu Zeng, Yuxuan Fan, Muyang Zhang, Ziyang Yan, Ao Ma, Xiaochen Wang, Hao Tang, Yan Wang, Shuyan Li,
- Abstract要約: EventVADはイベント対応のビデオ異常検出フレームワークである。
調整された動的グラフアーキテクチャとマルチモーダル・イベント推論を組み合わせる。
トレーニング不要な環境での最先端(SOTA)を実現し、7B以上のMLLMを使用する強力なベースラインを上回ります。
- 参考スコア(独自算出の注目度): 19.714436150837148
- License:
- Abstract: Video Anomaly Detection~(VAD) focuses on identifying anomalies within videos. Supervised methods require an amount of in-domain training data and often struggle to generalize to unseen anomalies. In contrast, training-free methods leverage the intrinsic world knowledge of large language models (LLMs) to detect anomalies but face challenges in localizing fine-grained visual transitions and diverse events. Therefore, we propose EventVAD, an event-aware video anomaly detection framework that combines tailored dynamic graph architectures and multimodal LLMs through temporal-event reasoning. Specifically, EventVAD first employs dynamic spatiotemporal graph modeling with time-decay constraints to capture event-aware video features. Then, it performs adaptive noise filtering and uses signal ratio thresholding to detect event boundaries via unsupervised statistical features. The statistical boundary detection module reduces the complexity of processing long videos for MLLMs and improves their temporal reasoning through event consistency. Finally, it utilizes a hierarchical prompting strategy to guide MLLMs in performing reasoning before determining final decisions. We conducted extensive experiments on the UCF-Crime and XD-Violence datasets. The results demonstrate that EventVAD with a 7B MLLM achieves state-of-the-art (SOTA) in training-free settings, outperforming strong baselines that use 7B or larger MLLMs.
- Abstract(参考訳): Video Anomaly Detection~(VAD)は、ビデオ内の異常を特定することに焦点を当てる。
監視された方法は、多くのドメイン内のトレーニングデータを必要とし、しばしば目に見えない異常に一般化するのに苦労する。
対照的に、トレーニングフリーな手法は、大きな言語モデル(LLM)の本質的な世界知識を活用して異常を検出するが、きめ細かい視覚遷移や多様な事象の局所化において困難に直面している。
そこで,イベント対応ビデオ異常検出フレームワークであるEventVADを提案する。
具体的には、EventVADは、動的時空間グラフモデリングと時間遅延制約を使ってイベント認識ビデオの特徴をキャプチャする。
そして、適応雑音フィルタリングを行い、信号比閾値を用いて、教師なし統計特徴による事象境界を検出する。
統計的境界検出モジュールはMLLMの長ビデオ処理の複雑さを低減し、イベント整合性による時間的推論を改善する。
最後に、最終決定を下す前にMLLMを誘導する階層的なプロンプト戦略を利用する。
UCF-CrimeとXD-Violenceのデータセットについて広範な実験を行った。
その結果、7BのMLLMを使用したEventVADは、7B以上のMLLMを使用する強力なベースラインよりも優れた、トレーニング不要な設定で最先端(SOTA)を実現することが示された。
関連論文リスト
- Weakly Supervised Video Anomaly Detection and Localization with Spatio-Temporal Prompts [57.01985221057047]
本稿では、事前学習された視覚言語モデル(VLM)に基づく、弱教師付きビデオ異常検出および局所化のための時間的プロンプト埋め込み(WSVADL)を学習する新しい手法を提案する。
提案手法は,WSVADLタスクの3つの公開ベンチマークにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2024-08-12T03:31:29Z) - MissionGNN: Hierarchical Multimodal GNN-based Weakly Supervised Video Anomaly Recognition with Mission-Specific Knowledge Graph Generation [5.0923114224599555]
本稿では,新しい階層グラフニューラルネットワーク(GNN)モデルであるMissionGNNを紹介する。
提案手法は,大規模マルチモーダルモデル上での重勾配計算を回避し,従来の手法の限界を回避する。
我々のモデルは,従来のセグメンテーションベースやマルチモーダルアプローチの制約を伴わずに,リアルタイムビデオ解析のための実用的で効率的なソリューションを提供する。
論文 参考訳(メタデータ) (2024-06-27T01:09:07Z) - VANE-Bench: Video Anomaly Evaluation Benchmark for Conversational LMMs [64.60035916955837]
VANE-Benchはビデオの異常や矛盾を検出するためのビデオLMMの熟練度を評価するために設計されたベンチマークである。
我々のデータセットは、既存の最先端のテキスト・ビデオ生成モデルを用いて合成された一連のビデオから構成される。
我々は、このベンチマークタスクにおいて、オープンソースとクローズドソースの両方で既存の9つのビデオLMMを評価し、ほとんどのモデルが微妙な異常を効果的に識別するのに困難に直面することを発見した。
論文 参考訳(メタデータ) (2024-06-14T17:59:01Z) - Harnessing Large Language Models for Training-free Video Anomaly Detection [34.76811491190446]
ビデオ異常検出(VAD)は、ビデオ内の異常事象を時間的に検出することを目的としている。
トレーニングベースのメソッドはドメイン固有のものになりがちなので、実践的なデプロイメントにはコストがかかる。
Language-based VAD (LAVAD)を提案する。
論文 参考訳(メタデータ) (2024-04-01T09:34:55Z) - Dynamic Erasing Network Based on Multi-Scale Temporal Features for
Weakly Supervised Video Anomaly Detection [103.92970668001277]
弱教師付きビデオ異常検出のための動的消去ネットワーク(DE-Net)を提案する。
まず,異なる長さのセグメントから特徴を抽出できるマルチスケール時間モデリングモジュールを提案する。
そして,検出された異常の完全性を動的に評価する動的消去戦略を設計する。
論文 参考訳(メタデータ) (2023-12-04T09:40:11Z) - Beyond the Benchmark: Detecting Diverse Anomalies in Videos [0.6993026261767287]
ビデオ異常検出(VAD)は、現代の監視システムにおいて重要な役割を担い、現実の状況における様々な異常を識別することを目的としている。
現在のベンチマークデータセットは、新しいオブジェクト検出のような単純な単一フレームの異常を主に強調している。
我々は,従来のベンチマーク境界を超える複雑な異常を包含するVAD調査の拡大を提唱する。
論文 参考訳(メタデータ) (2023-10-03T09:22:06Z) - DeNoising-MOT: Towards Multiple Object Tracking with Severe Occlusions [52.63323657077447]
DNMOTは、複数のオブジェクト追跡のためのエンドツーエンドのトレーニング可能なDeNoising Transformerである。
具体的には、トレーニング中にノイズを伴って軌道を拡大し、エンコーダ・デコーダアーキテクチャのデノイング過程をモデルに学習させる。
我々はMOT17,MOT20,DanceTrackのデータセットについて広範な実験を行い,実験結果から,提案手法が従来の最先端手法よりも明確なマージンで優れていることが示された。
論文 参考訳(メタデータ) (2023-09-09T04:40:01Z) - Robust Unsupervised Video Anomaly Detection by Multi-Path Frame
Prediction [61.17654438176999]
本稿では,フレーム予測と適切な設計による新規で頑健な非教師付きビデオ異常検出手法を提案する。
提案手法は,CUHK Avenueデータセット上で88.3%のフレームレベルAUROCスコアを得る。
論文 参考訳(メタデータ) (2020-11-05T11:34:12Z) - A Background-Agnostic Framework with Adversarial Training for Abnormal
Event Detection in Video [120.18562044084678]
近年,ビデオにおける異常事象検出は複雑なコンピュータビジョンの問題として注目されている。
通常のイベントのみを含むトレーニングビデオから学習するバックグラウンドに依存しないフレームワークを提案する。
論文 参考訳(メタデータ) (2020-08-27T18:39:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。