論文の概要: Event Signal Filtering via Probability Flux Estimation
- arxiv url: http://arxiv.org/abs/2504.07503v1
- Date: Thu, 10 Apr 2025 07:03:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-11 12:20:52.250761
- Title: Event Signal Filtering via Probability Flux Estimation
- Title(参考訳): 確率束推定によるイベント信号フィルタリング
- Authors: Jinze Chen, Wei Zhai, Yang Cao, Bin Li, Zheng-Jun Zha,
- Abstract要約: イベントは、非同期センシングを通じてシーンダイナミクスをキャプチャするための新しいパラダイムを提供するが、その固有のランダム性は、しばしば劣化した信号品質につながる。
したがって、イベント信号フィルタリングは、この内部ランダム性を低減し、多様な取得条件をまたいだ一貫した出力を確保することで、忠実性を高めるために不可欠である。
本稿ではイベント密度フローフィルタ(EDFilter)と呼ばれる生成オンラインフィルタリングフレームワークを紹介する。
実験では、イベントフィルタリング、スーパーレゾリューション、イベントベースの直接追跡といったタスクでEDFilterのパフォーマンスを検証する。
- 参考スコア(独自算出の注目度): 58.31652473933809
- License:
- Abstract: Events offer a novel paradigm for capturing scene dynamics via asynchronous sensing, but their inherent randomness often leads to degraded signal quality. Event signal filtering is thus essential for enhancing fidelity by reducing this internal randomness and ensuring consistent outputs across diverse acquisition conditions. Unlike traditional time series that rely on fixed temporal sampling to capture steady-state behaviors, events encode transient dynamics through polarity and event intervals, making signal modeling significantly more complex. To address this, the theoretical foundation of event generation is revisited through the lens of diffusion processes. The state and process information within events is modeled as continuous probability flux at threshold boundaries of the underlying irradiance diffusion. Building on this insight, a generative, online filtering framework called Event Density Flow Filter (EDFilter) is introduced. EDFilter estimates event correlation by reconstructing the continuous probability flux from discrete events using nonparametric kernel smoothing, and then resamples filtered events from this flux. To optimize fidelity over time, spatial and temporal kernels are employed in a time-varying optimization framework. A fast recursive solver with O(1) complexity is proposed, leveraging state-space models and lookup tables for efficient likelihood computation. Furthermore, a new real-world benchmark Rotary Event Dataset (RED) is released, offering microsecond-level ground truth irradiance for full-reference event filtering evaluation. Extensive experiments validate EDFilter's performance across tasks like event filtering, super-resolution, and direct event-based blob tracking. Significant gains in downstream applications such as SLAM and video reconstruction underscore its robustness and effectiveness.
- Abstract(参考訳): イベントは、非同期センシングによってシーンダイナミクスをキャプチャするための新しいパラダイムを提供するが、その固有のランダム性は、しばしば劣化した信号品質につながる。
したがって、イベント信号フィルタリングは、この内部ランダム性を低減し、多様な取得条件をまたいだ一貫した出力を確保することで、忠実性を高めるために不可欠である。
定常状態の振る舞いを捉えるために固定時間サンプリングに依存する伝統的な時系列とは異なり、事象は極性や事象間隔を通じて過渡的ダイナミクスを符号化し、信号モデリングをかなり複雑にする。
これを解決するために、事象発生の理論的基礎は拡散過程のレンズを通して再考される。
イベント内の状態およびプロセス情報は、基礎となる照射拡散のしきい値境界における連続確率フラックスとしてモデル化される。
この洞察に基づいて、イベント密度フローフィルタ(EDFilter)と呼ばれる生成的オンラインフィルタリングフレームワークが導入された。
EDFilterは、非パラメトリックカーネルスムーシングを用いて離散イベントから連続確率フラックスを再構成し、このフラックスからフィルタイベントを再サンプリングすることで、イベント相関を推定する。
時間とともに忠実度を最適化するために、時空間カーネルと時空間カーネルを時間変化最適化フレームワークに採用する。
O(1)複雑性を持つ高速再帰解法を提案し、状態空間モデルとルックアップテーブルを有効精度計算に利用した。
さらに、新しい実世界のベンチマークであるRotary Event Dataset (RED)がリリースされた。
大規模な実験は、イベントフィルタリング、超解像、直接イベントベースのブロブトラッキングといったタスクにわたるEDFilterのパフォーマンスを検証する。
SLAMやビデオ再構成といったダウンストリームアプリケーションにおいて、その堅牢性と有効性は顕著に向上している。
関連論文リスト
- Revisit Event Generation Model: Self-Supervised Learning of Event-to-Video Reconstruction with Implicit Neural Representations [11.874972134063638]
本稿では,ラベル付きデータや光フロー推定を必要としない新しいSSLイベント・ビデオ再構成手法であるEvINRを提案する。
我々は、(x, y, t)$を座標とする暗黙的ニューラル表現(INR)を用いて、事象発生方程式を表現する。
オンラインの要求に対してEvINRを実現するために,トレーニングプロセスを大幅に高速化するいくつかのアクセラレーション手法を提案する。
論文 参考訳(メタデータ) (2024-07-26T04:18:10Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - Fast Window-Based Event Denoising with Spatiotemporal Correlation
Enhancement [85.66867277156089]
同時にイベントのスタックを扱うウィンドウベースのイベントデノゲーションを提案する。
空間領域では、実世界の事象と雑音を識別するために、最大後部(MAP)を選択する。
我々のアルゴリズムは、イベントノイズを効果的かつ効率的に除去し、下流タスクの性能を向上させることができる。
論文 参考訳(メタデータ) (2024-02-14T15:56:42Z) - Representation Learning on Event Stream via an Elastic Net-incorporated
Tensor Network [1.9515859963221267]
本稿では,イベントストリーム中のすべてのイベントのグローバルな相関を同時に取得できる新しい表現法を提案する。
本手法は, 最先端手法と比較して, フィルタノイズなどの応用において有効な結果が得られる。
論文 参考訳(メタデータ) (2024-01-16T02:51:47Z) - Implicit Event-RGBD Neural SLAM [54.74363487009845]
神経性SLAMは近年顕著な進歩を遂げている。
既存の手法は、非理想的なシナリオにおいて重大な課題に直面します。
本稿では,最初のイベントRGBD暗黙的ニューラルSLAMフレームワークであるEN-SLAMを提案する。
論文 参考訳(メタデータ) (2023-11-18T08:48:58Z) - ELUQuant: Event-Level Uncertainty Quantification in Deep Inelastic
Scattering [0.0]
物理事象レベルでの詳細な不確実性定量化(UQ)のための流れを近似した物理インフォームドベイズニューラルネットワーク(BNN)を提案する。
Deep Inelastic Scattering (DIS) イベントに適用すると、我々のモデルはキネティック変数 $x$, $Q2$, $y$ を効果的に抽出する。
根底にある不確実性に関するこの詳細な説明は、特にイベントフィルタリングのようなタスクにおいて、意思決定には重要でないことを証明している。
論文 参考訳(メタデータ) (2023-10-04T15:50:05Z) - DiffSED: Sound Event Detection with Denoising Diffusion [70.18051526555512]
生成学習の観点からSED問題を再構築する。
具体的には,騒音拡散過程において,雑音のある提案から音の時間境界を生成することを目的としている。
トレーニング中は,ノイズの多い遅延クエリを基本バージョンに変換することで,ノイズ発生過程の逆転を学習する。
論文 参考訳(メタデータ) (2023-08-14T17:29:41Z) - ProgressiveMotionSeg: Mutually Reinforced Framework for Event-Based
Motion Segmentation [101.19290845597918]
本稿では,動作推定 (ME) モジュールとイベントデノイング (ED) モジュールを相互に強化された方法で共同最適化する。
時間的相関をガイダンスとして、EDモジュールは各イベントが実活動イベントに属するという信頼度を算出し、MEモジュールに送信し、ノイズ抑制のための運動セグメンテーションのエネルギー関数を更新する。
論文 参考訳(メタデータ) (2022-03-22T13:40:26Z) - Event Cause Analysis in Distribution Networks using Synchro Waveform
Measurements [2.3780731536926165]
本稿では,配信ネットワークにおける状況認識を高めるために,事象原因分析のための機械学習手法を提案する。
提案手法は,機械学習,畳み込みニューラルネットワーク(CNN)に基づく。
論文 参考訳(メタデータ) (2020-08-25T01:25:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。