論文の概要: SSTAF: Spatial-Spectral-Temporal Attention Fusion Transformer for Motor Imagery Classification
- arxiv url: http://arxiv.org/abs/2504.13220v1
- Date: Thu, 17 Apr 2025 07:45:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-28 20:55:36.078179
- Title: SSTAF: Spatial-Spectral-Temporal Attention Fusion Transformer for Motor Imagery Classification
- Title(参考訳): SSTAF: モータ画像分類のための空間スペクトル-時間アテンションフュージョン変換器
- Authors: Ummay Maria Muna, Md. Mehedi Hasan Shawon, Md Jobayer, Sumaiya Akter, Saifur Rahman Sabuj,
- Abstract要約: 脳電図に基づく運動画像分類における脳-コンピュータインタフェース(BCI)は、神経リハビリテーションと補助技術において有望な解決策を提供する。
脳波信号の非定常特性と重要な物体間変動は、頑健な物体間分類モデルを開発する上で大きな課題を引き起こす。
本稿では,上肢運動画像分類に特化して設計されたSSTAF変換器を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Brain-computer interfaces (BCI) in electroencephalography (EEG)-based motor imagery classification offer promising solutions in neurorehabilitation and assistive technologies by enabling communication between the brain and external devices. However, the non-stationary nature of EEG signals and significant inter-subject variability cause substantial challenges for developing robust cross-subject classification models. This paper introduces a novel Spatial-Spectral-Temporal Attention Fusion (SSTAF) Transformer specifically designed for upper-limb motor imagery classification. Our architecture consists of a spectral transformer and a spatial transformer, followed by a transformer block and a classifier network. Each module is integrated with attention mechanisms that dynamically attend to the most discriminative patterns across multiple domains, such as spectral frequencies, spatial electrode locations, and temporal dynamics. The short-time Fourier transform is incorporated to extract features in the time-frequency domain to make it easier for the model to obtain a better feature distinction. We evaluated our SSTAF Transformer model on two publicly available datasets, the EEGMMIDB dataset, and BCI Competition IV-2a. SSTAF Transformer achieves an accuracy of 76.83% and 68.30% in the data sets, respectively, outperforms traditional CNN-based architectures and a few existing transformer-based approaches.
- Abstract(参考訳): 脳電図に基づく運動画像分類における脳-コンピュータインタフェース(BCI)は、脳と外部デバイス間の通信を可能にすることにより、神経リハビリテーションと補助技術において有望な解決策を提供する。
しかし、脳波信号の非定常的性質と重要な物体間変動は、頑健な物体間分類モデルを開発する上で大きな課題を引き起こす。
本稿では,上肢運動画像分類に特化して設計されたSSTAF変換器を提案する。
我々のアーキテクチャは、スペクトル変換器と空間変換器からなり、次に変換器ブロックと分類器ネットワークが続く。
各モジュールは、スペクトル周波数、空間電極位置、時間ダイナミクスなど、複数の領域にまたがる最も差別的なパターンに動的に対応する注意機構と統合される。
短時間フーリエ変換は、時間周波数領域の特徴を抽出するために組み込まれ、モデルがより優れた特徴区別を得るのを容易にする。
公開データセットであるEEGMMIDBデータセットとBCIコンペティションIV-2aを用いて,SSTAFトランスフォーマーモデルの評価を行った。
SSTAF Transformerはデータセットの76.83%と68.30%の精度を達成し、従来のCNNアーキテクチャといくつかの既存のトランスフォーマーベースのアプローチを上回っている。
関連論文リスト
- Hierarchical Transformer for Electrocardiogram Diagnosis [1.4124476944967472]
トランスフォーマーは元々NLPやコンピュータビジョンで顕著だったが、現在ではECG信号解析に適応している。
本稿では,モデルを複数のステージに分割する階層型トランスフォーマーアーキテクチャを提案する。
分類トークンは特徴尺度にまたがって情報を集約し、変換器の異なる段階間の相互作用を容易にする。
論文 参考訳(メタデータ) (2024-11-01T17:28:03Z) - A Hybrid Transformer-Mamba Network for Single Image Deraining [70.64069487982916]
既存のデラリング変換器では、固定レンジウィンドウやチャネル次元に沿って自己アテンション機構を採用している。
本稿では,多分岐型トランスフォーマー・マンバネットワーク(Transformer-Mamba Network,TransMamba Network,Transformer-Mamba Network)を提案する。
論文 参考訳(メタデータ) (2024-08-31T10:03:19Z) - MART: MultiscAle Relational Transformer Networks for Multi-agent Trajectory Prediction [5.8919870666241945]
マルチエージェント軌道予測のためのMultiplescleimat Transformer (MART) ネットワークを提案する。
MARTは、変圧器機械の個人およびグループ動作を考えるためのハイパーグラフトランスフォーマーアーキテクチャである。
さらに,実環境における複雑なグループ関係の推論を目的としたAdaptive Group Estor (AGE)を提案する。
論文 参考訳(メタデータ) (2024-07-31T14:31:49Z) - EEGEncoder: Advancing BCI with Transformer-Based Motor Imagery Classification [11.687193535939798]
脳-コンピュータインタフェース(BCI)は、脳波信号を用いてデバイスを直接神経制御する。
脳波に基づく運動画像(MI)分類のための従来の機械学習手法は、手動の特徴抽出やノイズに対する感受性といった課題に遭遇する。
本稿では,これらの制限を克服するために改良型トランスフォーマーとTCNを用いたディープラーニングフレームワークであるEEGEncoderを紹介する。
論文 参考訳(メタデータ) (2024-04-23T09:51:24Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - FactoFormer: Factorized Hyperspectral Transformers with Self-Supervised
Pretraining [36.44039681893334]
ハイパースペクトル画像(HSI)は、豊富なスペクトルと空間情報を含む。
現在の最先端ハイパースペクトル変換器は、入力されたHSIサンプルをスペクトル次元に沿ってトークン化するのみである。
本稿では、自己教師付き事前学習手順を取り入れた新しい分解スペクトル空間変換器を提案する。
論文 参考訳(メタデータ) (2023-09-18T02:05:52Z) - Isomer: Isomerous Transformer for Zero-shot Video Object Segmentation [59.91357714415056]
コンテクスト共有変換器(CST)とセマンティックガザリング散乱変換器(SGST)の2つの変種を提案する。
CSTは、軽量な計算により、画像フレーム内のグローバル共有コンテキスト情報を学習し、SGSTは、前景と背景のセマンティック相関を別々にモデル化する。
多段核融合にバニラ変換器を使用するベースラインと比較して,我々は13倍の速度向上を実現し,新しい最先端ZVOS性能を実現する。
論文 参考訳(メタデータ) (2023-08-13T06:12:00Z) - Vision Transformer with Convolutions Architecture Search [72.70461709267497]
本稿では,畳み込み型アーキテクチャサーチ(VTCAS)を用いたアーキテクチャ探索手法を提案する。
VTCASによって探索された高性能バックボーンネットワークは、畳み込みニューラルネットワークの望ましい特徴をトランスフォーマーアーキテクチャに導入する。
これは、特に低照度屋内シーンにおいて、物体認識のためのニューラルネットワークの堅牢性を高める。
論文 参考訳(メタデータ) (2022-03-20T02:59:51Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
本稿では,CNNからの詳細な空間情報を活用するためのハイブリッドフレームワークと,表現学習の強化を目的としたトランスフォーマーが提供するグローバルコンテキストを統合することを提案する。
提案手法は、適応的なサンプリングとリカバリからなるエンドツーエンドの圧縮画像センシング手法である。
実験により, 圧縮センシングにおける専用トランスアーキテクチャの有効性が示された。
論文 参考訳(メタデータ) (2021-12-31T04:37:11Z) - Combining Transformer Generators with Convolutional Discriminators [9.83490307808789]
最近提案されたTransGANはトランスフォーマーアーキテクチャのみを使用した最初のGANである。
TransGANは、データ拡張、トレーニング中の補助的な超解像タスク、そして自己保持メカニズムを導く前にマスクを必要とする。
我々は、よく知られたCNN識別器のベンチマークを行い、トランスフォーマーベースジェネレータのサイズを減らし、両方のアーキテクチャ要素をハイブリッドモデルに組み込むことにより、より良い結果をもたらすことを示す。
論文 参考訳(メタデータ) (2021-05-21T07:56:59Z) - DA-DETR: Domain Adaptive Detection Transformer with Information Fusion [53.25930448542148]
DA-DETRは、ラベル付きソースドメインからラベルなしターゲットドメインへの効果的な転送のための情報融合を導入するドメイン適応型オブジェクト検出変換器である。
本稿では,CNN機能とトランスフォーマー機能を融合した新しいCNN-Transformer Blender(CTBlender)を提案する。
CTBlenderはTransformer機能を使用して、高レベルの意味情報と低レベルの空間情報が融合した複数のスケールでCNN機能を変調し、正確な物体識別と位置決めを行う。
論文 参考訳(メタデータ) (2021-03-31T13:55:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。