論文の概要: Hierarchical Transformer for Electrocardiogram Diagnosis
- arxiv url: http://arxiv.org/abs/2411.00755v1
- Date: Fri, 01 Nov 2024 17:28:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:47:17.846871
- Title: Hierarchical Transformer for Electrocardiogram Diagnosis
- Title(参考訳): 心電図診断のための階層変換器
- Authors: Xiaoya Tang, Jake Berquist, Benjamin A. Steinberg, Tolga Tasdizen,
- Abstract要約: トランスフォーマーは元々NLPやコンピュータビジョンで顕著だったが、現在ではECG信号解析に適応している。
本稿では,モデルを複数のステージに分割する階層型トランスフォーマーアーキテクチャを提案する。
分類トークンは特徴尺度にまたがって情報を集約し、変換器の異なる段階間の相互作用を容易にする。
- 参考スコア(独自算出の注目度): 1.4124476944967472
- License:
- Abstract: Transformers, originally prominent in NLP and computer vision, are now being adapted for ECG signal analysis. This paper introduces a novel hierarchical transformer architecture that segments the model into multiple stages by assessing the spatial size of the embeddings, thus eliminating the need for additional downsampling strategies or complex attention designs. A classification token aggregates information across feature scales, facilitating interactions between different stages of the transformer. By utilizing depth-wise convolutions in a six-layer convolutional encoder, our approach preserves the relationships between different ECG leads. Moreover, an attention gate mechanism learns associations among the leads prior to classification. This model adapts flexibly to various embedding networks and input sizes while enhancing the interpretability of transformers in ECG signal analysis.
- Abstract(参考訳): トランスフォーマーは元々NLPやコンピュータビジョンで顕著だったが、現在ではECG信号解析に適応している。
本稿では,埋め込みの空間的サイズを評価することで,モデルを複数の段階に分割する階層型トランスフォーマーアーキテクチャを提案する。
分類トークンは、特徴尺度にまたがって情報を集約し、トランスフォーマーの異なるステージ間の相互作用を容易にする。
6層畳み込みエンコーダにおける奥行きの畳み込みを利用して, 異なるECGリード間の関係を保存している。
さらに、アテンションゲート機構は、分類の前にリード間の関連を学習する。
このモデルは、ECG信号解析における変換器の解釈可能性を高めつつ、様々な埋め込みネットワークや入力サイズに柔軟に適用する。
関連論文リスト
- ECG Signal Denoising Using Multi-scale Patch Embedding and Transformers [6.882042556551613]
本稿では,1次元畳み込み層と変圧器アーキテクチャを組み合わせた深層学習手法を提案する。
次に、この埋め込みをトランスネットワークの入力として使用し、ECG信号をデノナイズするトランスの能力を高める。
論文 参考訳(メタデータ) (2024-07-12T03:13:52Z) - Automatic Graph Topology-Aware Transformer [50.2807041149784]
マイクロレベルおよびマクロレベルの設計による包括的グラフトランスフォーマー検索空間を構築した。
EGTASはマクロレベルでのグラフトランスフォーマートポロジとマイクロレベルでのグラフ認識戦略を進化させる。
グラフレベルおよびノードレベルのタスクに対して,EGTASの有効性を示す。
論文 参考訳(メタデータ) (2024-05-30T07:44:31Z) - Rethinking Attention Gated with Hybrid Dual Pyramid Transformer-CNN for Generalized Segmentation in Medical Imaging [17.07490339960335]
本稿では,強力なCNN-Transformerエンコーダを効率的に構築するためのハイブリッドCNN-Transformerセグメンテーションアーキテクチャ(PAG-TransYnet)を提案する。
我々のアプローチは、デュアルピラミッドハイブリッドエンコーダ内のアテンションゲートを利用する。
論文 参考訳(メタデータ) (2024-04-28T14:37:10Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - Multi-scale Transformer-based Network for Emotion Recognition from Multi
Physiological Signals [11.479653866646762]
本稿では,生理学的データから感情認識を行うためのマルチスケールトランスフォーマーを用いた効率的な手法を提案する。
我々のアプローチは、内部信号と人間の感情の関係を確立するために、データのスケーリングと組み合わせたマルチモーダル手法を適用することである。
EPiCコンペティションのCASEデータセットでは,RMSEスコアが1.45。
論文 参考訳(メタデータ) (2023-05-01T11:10:48Z) - A Dual-scale Lead-seperated Transformer With Lead-orthogonal Attention
And Meta-information For Ecg Classification [26.07181634056045]
本研究は、鉛直交注意とメタ情報(DLTM-ECG)を併用したデュアルスケールリード分離変圧器を提案する。
ECGセグメントは独立パッチとして解釈され、縮小次元信号と共に二重スケールの表現を形成する。
我々の研究は、同様の多チャンネル生体電気信号処理や生理的多モードタスクの可能性を秘めている。
論文 参考訳(メタデータ) (2022-11-23T08:45:34Z) - SIM-Trans: Structure Information Modeling Transformer for Fine-grained
Visual Categorization [59.732036564862796]
本稿では,オブジェクト構造情報を変換器に組み込んだSIM-Trans(Structure Information Modeling Transformer)を提案する。
提案した2つのモジュールは軽量化されており、任意のトランスフォーマーネットワークにプラグインでき、エンドツーエンドで容易に訓練できる。
実験と解析により,提案したSIM-Transが細粒度視覚分類ベンチマークの最先端性能を達成することを示した。
論文 参考訳(メタデータ) (2022-08-31T03:00:07Z) - Cost Aggregation with 4D Convolutional Swin Transformer for Few-Shot
Segmentation [58.4650849317274]
Volumetric Aggregation with Transformers (VAT)は、数ショットセグメンテーションのためのコスト集約ネットワークである。
VATは、コスト集約が中心的な役割を果たすセマンティック対応のための最先端のパフォーマンスも達成する。
論文 参考訳(メタデータ) (2022-07-22T04:10:30Z) - Exploring Structure-aware Transformer over Interaction Proposals for
Human-Object Interaction Detection [119.93025368028083]
我々は、新しいトランスフォーマー型ヒューマンオブジェクトインタラクション(HOI)検出器、すなわち、インタラクション提案(STIP)による構造認識トランスフォーマーを設計する。
STIPはHOIセット予測の過程を、まず相互作用の提案生成を行い、次に構造認識変換器を介して非パラメトリック相互作用提案をHOI予測に変換する2つのフェーズに分解する。
構造対応トランスフォーマーは、相互作用提案間の相同的意味構造を付加してバニラトランスフォーマーをアップグレードし、各相互作用提案内の人間・物体の局所的空間構造を付加し、HOIを強化する。
論文 参考訳(メタデータ) (2022-06-13T16:21:08Z) - Combining Transformer Generators with Convolutional Discriminators [9.83490307808789]
最近提案されたTransGANはトランスフォーマーアーキテクチャのみを使用した最初のGANである。
TransGANは、データ拡張、トレーニング中の補助的な超解像タスク、そして自己保持メカニズムを導く前にマスクを必要とする。
我々は、よく知られたCNN識別器のベンチマークを行い、トランスフォーマーベースジェネレータのサイズを減らし、両方のアーキテクチャ要素をハイブリッドモデルに組み込むことにより、より良い結果をもたらすことを示す。
論文 参考訳(メタデータ) (2021-05-21T07:56:59Z) - Multi-Pass Transformer for Machine Translation [51.867982400693194]
我々は、後続のレイヤの出力に照らして、以前のレイヤが情報を処理できるマルチパストランスフォーマー(MPT)アーキテクチャについて検討する。
MPTは、挑戦的な機械翻訳En-DeとEn-Frデータセット上でのLarge Transformerのパフォーマンスを上回ることができる。
ハード接続の場合、En-Deの最適接続パターンはEn-Frの性能も向上する。
論文 参考訳(メタデータ) (2020-09-23T21:22:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。