Recursive Deep Inverse Reinforcement Learning
- URL: http://arxiv.org/abs/2504.13241v2
- Date: Mon, 21 Apr 2025 03:47:31 GMT
- Title: Recursive Deep Inverse Reinforcement Learning
- Authors: Paul Ghanem, Michael Potter, Owen Howell, Pau Closas, Alireza Ramezani, Deniz Erdogmus, Tales Imbiriba,
- Abstract summary: Inferring an adversary's goals from exhibited behavior is crucial for counterplanning and non-cooperative multi-agent systems.<n>We propose an online Recursive Deep Inverse Reinforcement Learning (RDIRL) approach to recover the cost function governing the adversary actions and goals.
- Score: 16.05411507856928
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inferring an adversary's goals from exhibited behavior is crucial for counterplanning and non-cooperative multi-agent systems in domains like cybersecurity, military, and strategy games. Deep Inverse Reinforcement Learning (IRL) methods based on maximum entropy principles show promise in recovering adversaries' goals but are typically offline, require large batch sizes with gradient descent, and rely on first-order updates, limiting their applicability in real-time scenarios. We propose an online Recursive Deep Inverse Reinforcement Learning (RDIRL) approach to recover the cost function governing the adversary actions and goals. Specifically, we minimize an upper bound on the standard Guided Cost Learning (GCL) objective using sequential second-order Newton updates, akin to the Extended Kalman Filter (EKF), leading to a fast (in terms of convergence) learning algorithm. We demonstrate that RDIRL is able to recover cost and reward functions of expert agents in standard and adversarial benchmark tasks. Experiments on benchmark tasks show that our proposed approach outperforms several leading IRL algorithms.
Related papers
- Non-Adversarial Inverse Reinforcement Learning via Successor Feature Matching [23.600285251963395]
In inverse reinforcement learning (IRL), an agent seeks to replicate expert demonstrations through interactions with the environment.
Traditionally, IRL is treated as an adversarial game, where an adversary searches over reward models, and a learner optimize the reward through repeated RL procedures.
We propose a novel approach to IRL by direct policy optimization, exploiting a linear factorization of the return as the inner product of successor features and a reward vector.
arXiv Detail & Related papers (2024-11-11T14:05:50Z) - REBEL: Reward Regularization-Based Approach for Robotic Reinforcement Learning from Human Feedback [61.54791065013767]
A misalignment between the reward function and human preferences can lead to catastrophic outcomes in the real world.<n>Recent methods aim to mitigate misalignment by learning reward functions from human preferences.<n>We propose a novel concept of reward regularization within the robotic RLHF framework.
arXiv Detail & Related papers (2023-12-22T04:56:37Z) - Curricular Subgoals for Inverse Reinforcement Learning [21.038691420095525]
Inverse Reinforcement Learning (IRL) aims to reconstruct the reward function from expert demonstrations to facilitate policy learning.
Existing IRL methods mainly focus on learning global reward functions to minimize the trajectory difference between the imitator and the expert.
We propose a novel Curricular Subgoal-based Inverse Reinforcement Learning framework, that explicitly disentangles one task with several local subgoals to guide agent imitation.
arXiv Detail & Related papers (2023-06-14T04:06:41Z) - Efficient Exploration via Epistemic-Risk-Seeking Policy Optimization [8.867416300893577]
Exploration remains a key challenge in deep reinforcement learning (RL)
In this paper we propose a new, differentiable optimistic objective that when optimized yields a policy that provably explores efficiently.
Results show significant performance improvements even over other efficient exploration techniques.
arXiv Detail & Related papers (2023-02-18T14:13:25Z) - Model-based Safe Deep Reinforcement Learning via a Constrained Proximal
Policy Optimization Algorithm [4.128216503196621]
We propose an On-policy Model-based Safe Deep RL algorithm in which we learn the transition dynamics of the environment in an online manner.
We show that our algorithm is more sample efficient and results in lower cumulative hazard violations as compared to constrained model-free approaches.
arXiv Detail & Related papers (2022-10-14T06:53:02Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z) - Anti-Concentrated Confidence Bonuses for Scalable Exploration [57.91943847134011]
Intrinsic rewards play a central role in handling the exploration-exploitation trade-off.
We introduce emphanti-concentrated confidence bounds for efficiently approximating the elliptical bonus.
We develop a practical variant for deep reinforcement learning that is competitive with contemporary intrinsic rewards on Atari benchmarks.
arXiv Detail & Related papers (2021-10-21T15:25:15Z) - Simplifying Deep Reinforcement Learning via Self-Supervision [51.2400839966489]
Self-Supervised Reinforcement Learning (SSRL) is a simple algorithm that optimize policies with purely supervised losses.
We show that SSRL is surprisingly competitive to contemporary algorithms with more stable performance and less running time.
arXiv Detail & Related papers (2021-06-10T06:29:59Z) - Robust Deep Reinforcement Learning through Adversarial Loss [74.20501663956604]
Recent studies have shown that deep reinforcement learning agents are vulnerable to small adversarial perturbations on the agent's inputs.
We propose RADIAL-RL, a principled framework to train reinforcement learning agents with improved robustness against adversarial attacks.
arXiv Detail & Related papers (2020-08-05T07:49:42Z) - Zeroth-Order Supervised Policy Improvement [94.0748002906652]
Policy gradient (PG) algorithms have been widely used in reinforcement learning (RL)
We propose Zeroth-Order Supervised Policy Improvement (ZOSPI)
ZOSPI exploits the estimated value function $Q$ globally while preserving the local exploitation of the PG methods.
arXiv Detail & Related papers (2020-06-11T16:49:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.