論文の概要: Weak Cube R-CNN: Weakly Supervised 3D Detection using only 2D Bounding Boxes
- arxiv url: http://arxiv.org/abs/2504.13297v1
- Date: Thu, 17 Apr 2025 19:13:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-28 20:25:21.407889
- Title: Weak Cube R-CNN: Weakly Supervised 3D Detection using only 2D Bounding Boxes
- Title(参考訳): 弱め立方体R-CNN:2次元バウンディングボックスのみを用いた弱めの3次元検出
- Authors: Andreas Lau Hansen, Lukas Wanzeck, Dim P. Papadopoulos,
- Abstract要約: 3Dオブジェクト検出器は通常、完全に教師された方法で訓練され、3Dラベル付きデータに大きく依存する。
この研究は、モノクラー法によるデータ要求を減らすために、弱教師付き3D検出に焦点を当てている。
本稿では,3次元の物体を推定時に予測できる一般モデルWeak Cube R-CNNを提案する。
- 参考スコア(独自算出の注目度): 5.492174268132387
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Monocular 3D object detection is an essential task in computer vision, and it has several applications in robotics and virtual reality. However, 3D object detectors are typically trained in a fully supervised way, relying extensively on 3D labeled data, which is labor-intensive and costly to annotate. This work focuses on weakly-supervised 3D detection to reduce data needs using a monocular method that leverages a singlecamera system over expensive LiDAR sensors or multi-camera setups. We propose a general model Weak Cube R-CNN, which can predict objects in 3D at inference time, requiring only 2D box annotations for training by exploiting the relationship between 2D projections of 3D cubes. Our proposed method utilizes pre-trained frozen foundation 2D models to estimate depth and orientation information on a training set. We use these estimated values as pseudo-ground truths during training. We design loss functions that avoid 3D labels by incorporating information from the external models into the loss. In this way, we aim to implicitly transfer knowledge from these large foundation 2D models without having access to 3D bounding box annotations. Experimental results on the SUN RGB-D dataset show increased performance in accuracy compared to an annotation time equalized Cube R-CNN baseline. While not precise for centimetre-level measurements, this method provides a strong foundation for further research.
- Abstract(参考訳): モノクロ3Dオブジェクト検出はコンピュータビジョンにおいて必須の課題であり、ロボット工学や仮想現実にいくつかの応用がある。
しかし、3Dオブジェクト検出器は通常、完全に教師された方法で訓練され、3Dラベル付きデータに大きく依存する。
この研究は、高価なLiDARセンサーやマルチカメラのセットアップにシングルカメラシステムを活用するモノクラー方式を用いて、データニーズを減らすために、弱い教師付き3D検出に焦点を当てている。
本稿では,3次元立方体の2次元プロジェクション間の関係を利用して,3次元のオブジェクトを推測時に予測できる汎用モデルWeak Cube R-CNNを提案する。
提案手法は,事前学習した凍結基礎2Dモデルを用いて,トレーニングセットの深さと方位情報を推定する。
我々は、これらの推定値をトレーニング中に擬似地上真理として利用する。
我々は、外部モデルからの情報を損失に組み込むことにより、3次元ラベルを避ける損失関数を設計する。
このようにして、我々は3Dバウンディングボックスアノテーションにアクセスすることなく、これらの大きな基盤2Dモデルから知識を暗黙的に伝達することを目指している。
SUN RGB-Dデータセットの実験結果は、アノテーション時間等化キューブR-CNNベースラインと比較して精度が向上した。
センチメートルレベルの測定では正確ではないが、この手法はさらなる研究の基盤となる。
関連論文リスト
- V-MIND: Building Versatile Monocular Indoor 3D Detector with Diverse 2D Annotations [17.49394091283978]
V-MIND(Versatile Monocular Indoor Detector)は,室内3D検出器の性能を向上させる。
大規模2次元画像を3次元点雲に変換し,その後に擬似3次元境界ボックスを導出することにより,3次元学習データを生成する。
V-MINDはOmni3D屋内データセット上の幅広いクラスにわたる最先端のオブジェクト検出性能を実現する。
論文 参考訳(メタデータ) (2024-12-16T03:28:00Z) - Training an Open-Vocabulary Monocular 3D Object Detection Model without 3D Data [57.53523870705433]
我々はOVM3D-Detと呼ばれる新しいオープン語彙単分子オブジェクト検出フレームワークを提案する。
OVM3D-Detは、入力または3Dバウンディングボックスを生成するために高精度のLiDARや3Dセンサーデータを必要としない。
オープンボキャブラリ2Dモデルと擬似LiDARを使用して、RGB画像に3Dオブジェクトを自動的にラベル付けし、オープンボキャブラリ単分子3D検出器の学習を促進する。
論文 参考訳(メタデータ) (2024-11-23T21:37:21Z) - ALPI: Auto-Labeller with Proxy Injection for 3D Object Detection using 2D Labels Only [5.699475977818167]
3Dオブジェクト検出は、自動運転車、ロボット工学、拡張現実など、さまざまな応用において重要な役割を果たす。
画像から2次元境界ボックスアノテーションにのみ依存する弱教師付き3次元アノテータを提案する。
論文 参考訳(メタデータ) (2024-07-24T11:58:31Z) - Homography Loss for Monocular 3D Object Detection [54.04870007473932]
ホログラフィーロス(Homography Loss)と呼ばれる,2次元情報と3次元情報の両方を利用する識別可能なロス関数を提案する。
提案手法は,KITTI 3Dデータセットにおいて,他の最先端技術と比較して高い性能を示す。
論文 参考訳(メタデータ) (2022-04-02T03:48:03Z) - FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle
Detection [81.79171905308827]
3Dアノテーションを使わずに点雲中の車両を検出するためのフラストラム対応幾何推論(FGR)を提案する。
本手法は粗い3次元セグメンテーションと3次元バウンディングボックス推定の2段階からなる。
2Dバウンディングボックスとスパースポイントクラウドだけで、3D空間内のオブジェクトを正確に検出できます。
論文 参考訳(メタデータ) (2021-05-17T07:29:55Z) - FCOS3D: Fully Convolutional One-Stage Monocular 3D Object Detection [78.00922683083776]
一般的な2D検出器をこの3Dタスクで動作させることは簡単ではない。
本報告では,完全畳み込み型単段検出器を用いた手法を用いてこの問題を考察する。
私たちのソリューションは、NeurIPS 2020のnuScenes 3D検出チャレンジのすべてのビジョンのみの方法の中で1位を獲得します。
論文 参考訳(メタデータ) (2021-04-22T09:35:35Z) - 3D-to-2D Distillation for Indoor Scene Parsing [78.36781565047656]
大規模3次元データリポジトリから抽出した3次元特徴を有効活用し,RGB画像から抽出した2次元特徴を向上する手法を提案する。
まず,事前学習した3Dネットワークから3D知識を抽出して2Dネットワークを監督し,トレーニング中の2D特徴からシミュレーションされた3D特徴を学習する。
次に,2次元の正規化方式を設計し,2次元特徴と3次元特徴のキャリブレーションを行った。
第3に,非ペアの3dデータを用いたトレーニングのフレームワークを拡張するために,意味を意識した対向的トレーニングモデルを設計した。
論文 参考訳(メタデータ) (2021-04-06T02:22:24Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
既存の手法では、2つのステップでこの問題に対処する: 第一深度推定を行い、その深さ推定から擬似LiDAR点雲表現を計算し、3次元空間で物体検出を行う。
この2つのタスクを同一のメトリック空間で統一するモデルを提案する。
提案手法は,既存の手法と比較して推定時間を大幅に削減し,挑戦的なKITTIベンチマークの最先端性能を実現する。
論文 参考訳(メタデータ) (2021-01-17T05:11:38Z) - Learning to Predict the 3D Layout of a Scene [0.3867363075280544]
本稿では,単一のRGB画像のみを使用する手法を提案し,LiDARセンサを持たないデバイスや車両に適用できるようにする。
KITTIデータセットは,クラスラベル付き道路交通シーン,2D境界ボックス,自由度7自由度3Dアノテーションで構成される。
我々は、公式のKITTIベンチマークで要求されるように、結合閾値70%の3次元交差で測定された適度に困難なデータに対して平均47.3%の平均精度を達成し、従来の最先端のRGBのみの手法よりも大きなマージンで上回った。
論文 参考訳(メタデータ) (2020-11-19T17:23:30Z) - RTM3D: Real-time Monocular 3D Detection from Object Keypoints for
Autonomous Driving [26.216609821525676]
最も成功した3D検出器は、3Dバウンディングボックスから2Dボックスへの投射制約を重要な構成要素としている。
画像空間における3次元境界ボックスの9つの視点キーポイントを予測し、3次元空間における3次元視点と2次元視点の幾何学的関係を利用して、次元、位置、方向を復元する。
提案手法は,KITTIベンチマークの最先端性能を達成しつつ,モノクロ画像の3次元検出を行う最初のリアルタイムシステムである。
論文 参考訳(メタデータ) (2020-01-10T08:29:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。