A Model-Based Approach to Imitation Learning through Multi-Step Predictions
- URL: http://arxiv.org/abs/2504.13413v1
- Date: Fri, 18 Apr 2025 02:19:30 GMT
- Title: A Model-Based Approach to Imitation Learning through Multi-Step Predictions
- Authors: Haldun Balim, Yang Hu, Yuyang Zhang, Na Li,
- Abstract summary: We present a novel model-based imitation learning framework inspired by model predictive control.<n>Our method outperforms traditional behavior cloning numerical benchmarks.<n>We provide theoretical guarantees on the sample complexity and error bounds of our method, offering insights into its convergence properties.
- Score: 8.888213496593556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Imitation learning is a widely used approach for training agents to replicate expert behavior in complex decision-making tasks. However, existing methods often struggle with compounding errors and limited generalization, due to the inherent challenge of error correction and the distribution shift between training and deployment. In this paper, we present a novel model-based imitation learning framework inspired by model predictive control, which addresses these limitations by integrating predictive modeling through multi-step state predictions. Our method outperforms traditional behavior cloning numerical benchmarks, demonstrating superior robustness to distribution shift and measurement noise both in available data and during execution. Furthermore, we provide theoretical guarantees on the sample complexity and error bounds of our method, offering insights into its convergence properties.
Related papers
- Learning with Imperfect Models: When Multi-step Prediction Mitigates Compounding Error [25.387541996071093]
Compounding error, where small prediction mistakes accumulate over time, presents a major challenge in learning-based control.<n>One approach to mitigate compounding error is to train multi-step predictors directly, rather than relying on autoregressive rollout of a single-step model.<n>We show that when the model class is well-specified and accurately captures the system dynamics, single-step models achieve lower prediction error.<n>On the other hand, when the model class is misspecified due to partial observability, direct multi-step predictors can significantly reduce bias and thus outperform single-step approaches.
arXiv Detail & Related papers (2025-04-02T14:18:52Z) - Imitation Learning from Observations: An Autoregressive Mixture of Experts Approach [2.4427666827706074]
This paper presents a novel approach to imitation learning from observations, where an autoregressive mixture of experts model is deployed to fit the underlying policy.
The effectiveness of the proposed framework is validated using two autonomous driving datasets collected from human demonstrations.
arXiv Detail & Related papers (2024-11-12T22:56:28Z) - Exogenous Matching: Learning Good Proposals for Tractable Counterfactual Estimation [1.9662978733004601]
We propose an importance sampling method for tractable and efficient estimation of counterfactual expressions.<n>By minimizing a common upper bound of counterfactual estimators, we transform the variance minimization problem into a conditional distribution learning problem.<n>We validate the theoretical results through experiments under various types and settings of Structural Causal Models (SCMs) and demonstrate the outperformance on counterfactual estimation tasks.
arXiv Detail & Related papers (2024-10-17T03:08:28Z) - Dynamic Post-Hoc Neural Ensemblers [55.15643209328513]
In this study, we explore employing neural networks as ensemble methods.
Motivated by the risk of learning low-diversity ensembles, we propose regularizing the model by randomly dropping base model predictions.
We demonstrate this approach lower bounds the diversity within the ensemble, reducing overfitting and improving generalization capabilities.
arXiv Detail & Related papers (2024-10-06T15:25:39Z) - Enhancing Fairness and Performance in Machine Learning Models: A Multi-Task Learning Approach with Monte-Carlo Dropout and Pareto Optimality [1.5498930424110338]
This study introduces an approach to mitigate bias in machine learning by leveraging model uncertainty.
Our approach utilizes a multi-task learning (MTL) framework combined with Monte Carlo (MC) Dropout to assess and mitigate uncertainty in predictions related to protected labels.
arXiv Detail & Related papers (2024-04-12T04:17:50Z) - Ensemble Modeling for Multimodal Visual Action Recognition [50.38638300332429]
We propose an ensemble modeling approach for multimodal action recognition.
We independently train individual modality models using a variant of focal loss tailored to handle the long-tailed distribution of the MECCANO [21] dataset.
arXiv Detail & Related papers (2023-08-10T08:43:20Z) - Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level
Stability and High-Level Behavior [51.60683890503293]
We propose a theoretical framework for studying behavior cloning of complex expert demonstrations using generative modeling.
We show that pure supervised cloning can generate trajectories matching the per-time step distribution of arbitrary expert trajectories.
arXiv Detail & Related papers (2023-07-27T04:27:26Z) - Predictive machine learning for prescriptive applications: a coupled
training-validating approach [77.34726150561087]
We propose a new method for training predictive machine learning models for prescriptive applications.
This approach is based on tweaking the validation step in the standard training-validating-testing scheme.
Several experiments with synthetic data demonstrate promising results in reducing the prescription costs in both deterministic and real models.
arXiv Detail & Related papers (2021-10-22T15:03:20Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
We present a method for learning multiple models, incorporating an objective that pressures each to learn a distinct way to solve the task.
We demonstrate our framework's ability to facilitate rapid adaptation to distribution shift.
arXiv Detail & Related papers (2020-06-12T12:23:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.