論文の概要: DADU: Dual Attention-based Deep Supervised UNet for Automated Semantic Segmentation of Cardiac Images
- arxiv url: http://arxiv.org/abs/2504.13415v1
- Date: Fri, 18 Apr 2025 02:22:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-28 19:39:47.270686
- Title: DADU: Dual Attention-based Deep Supervised UNet for Automated Semantic Segmentation of Cardiac Images
- Title(参考訳): DADU:心的画像の自動セマンティックセグメンテーションのためのデュアルアテンションに基づくディープスーパービジョンUNet
- Authors: Racheal Mukisa, Arvind K. Bansal,
- Abstract要約: 心磁気共鳴(CMR)画像から左心室と心筋の傷部組織を画像分割する深層学習モデルを提案する。
提案手法は,UNet,チャネルおよび空間的注意,エッジ検出に基づくスキップ接続,深層教師あり学習を統合し,CMR画像の精度を向上させる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an enhanced deep learning-based model for image segmentation of the left and right ventricles and myocardium scar tissue from cardiac magnetic resonance (CMR) images. The proposed technique integrates UNet, channel and spatial attention, edge-detection based skip-connection and deep supervised learning to improve the accuracy of the CMR image-segmentation. Images are processed using multiple channels to generate multiple feature-maps. We built a dual attention-based model to integrate channel and spatial attention. The use of extracted edges in skip connection improves the reconstructed images from feature-maps. The use of deep supervision reduces vanishing gradient problems inherent in classification based on deep neural networks. The algorithms for dual attention-based model, corresponding implementation and performance results are described. The performance results show that this approach has attained high accuracy: 98% Dice Similarity Score (DSC) and significantly lower Hausdorff Distance (HD). The performance results outperform other leading techniques both in DSC and HD.
- Abstract(参考訳): 心磁気共鳴(CMR)画像から左心室と心筋の傷部組織を画像分割する深層学習モデルを提案する。
提案手法は,UNet,チャネルおよび空間的注意,エッジ検出に基づくスキップ接続,深層教師あり学習を統合し,CMR画像の精度を向上させる。
画像は複数のチャンネルを使用して処理され、複数のフィーチャーマップを生成する。
チャネルと空間的アテンションを統合するために,デュアルアテンションに基づくモデルを構築した。
スキップ接続における抽出エッジの使用により、特徴マップからの再構成画像が改善される。
ディープ・インフォメーションの使用は、ディープ・ニューラルネットワークに基づく分類に固有の勾配問題を解消する。
二重注意モデル、対応する実装および性能結果のアルゴリズムについて述べる。
その結果,98% Dice similarity Score (DSC) と Hausdorff Distance (HD) が有意に低かった。
性能はDSCとHDの両方において他の先行技術よりも優れていた。
関連論文リスト
- PathSegDiff: Pathology Segmentation using Diffusion model representations [63.20694440934692]
そこで我々は,Latent Diffusion Models (LDMs) を事前学習した特徴抽出器として活用する,病理組織像分割の新しい手法であるPathSegDiffを提案する。
本手法は,H&E染色組織像から多彩な意味情報を抽出するために,自己教師型エンコーダによって誘導される病理特異的LCMを用いる。
本実験は,BCSSおよびGlaSデータセットにおける従来の手法よりも大幅に改善されたことを示す。
論文 参考訳(メタデータ) (2025-04-09T14:58:21Z) - DA-HFNet: Progressive Fine-Grained Forgery Image Detection and Localization Based on Dual Attention [12.36906630199689]
DA-HFNet鍛造画像データセットをテキストまたは画像支援GANおよび拡散モデルで作成する。
我々のゴールは、階層的なプログレッシブネットワークを使用して、異なるスケールの偽造物を検出およびローカライゼーションするために捕獲することである。
論文 参考訳(メタデータ) (2024-06-03T16:13:33Z) - An Advanced Features Extraction Module for Remote Sensing Image Super-Resolution [0.5461938536945723]
チャネル・アンド・スペースアテンション特徴抽出(CSA-FE)と呼ばれる高度な特徴抽出モジュールを提案する。
提案手法は,高頻度情報を含む特定のチャネルや空間的位置に着目し,関連する特徴に焦点を合わせ,無関係な特徴を抑えるのに役立つ。
本モデルは,既存モデルと比較して優れた性能を示した。
論文 参考訳(メタデータ) (2024-05-07T18:15:51Z) - CV-Attention UNet: Attention-based UNet for 3D Cerebrovascular Segmentation of Enhanced TOF-MRA Images [2.2265536092123006]
脳血管画像の正確な抽出にはCV-AttentionUNetと呼ばれる3次元脳血管注意UNet法を提案する。
低と高のセマンティクスを組み合わせるために,注意機構を適用した。
このアルゴリズムの新規性は、ラベル付きデータとラベルなしデータの両方でうまく機能する能力にあると考えています。
論文 参考訳(メタデータ) (2023-11-16T22:31:05Z) - ARHNet: Adaptive Region Harmonization for Lesion-aware Augmentation to
Improve Segmentation Performance [61.04246102067351]
本研究では,合成画像をよりリアルに見せるために,前景調和フレームワーク(ARHNet)を提案する。
実画像と合成画像を用いたセグメンテーション性能の向上に本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-07-02T10:39:29Z) - Superresolution and Segmentation of OCT scans using Multi-Stage
adversarial Guided Attention Training [18.056525121226862]
我々は,OCTスキャンを高分解能セグメンテーションラベルに変換する多段階・多識別型生成逆数ネットワーク(MultiSDGAN)を提案する。
我々は,MultiSDGANアーキテクチャに対して,チャネルと空間的注意の様々な組み合わせを評価し,比較し,より強力な特徴マップを抽出する。
その結果,Dice係数とSSIMでは21.44%,19.45%の相対的な改善が見られた。
論文 参考訳(メタデータ) (2022-06-10T00:26:55Z) - CAMERAS: Enhanced Resolution And Sanity preserving Class Activation
Mapping for image saliency [61.40511574314069]
バックプロパゲーション画像のサリエンシは、入力中の個々のピクセルのモデル中心の重要性を推定することにより、モデル予測を説明することを目的としている。
CAMERASは、外部の事前処理を必要とせずに、高忠実度バックプロパゲーション・サリエンシ・マップを計算できる手法である。
論文 参考訳(メタデータ) (2021-06-20T08:20:56Z) - Channel-wise Knowledge Distillation for Dense Prediction [73.99057249472735]
本稿では,学生ネットワークと教師ネットワークのチャンネルワイズ機能について提案する。
様々なネットワーク構造を持つ3つのベンチマークにおいて、一貫して優れた性能を実現している。
論文 参考訳(メタデータ) (2020-11-26T12:00:38Z) - DeepEMD: Differentiable Earth Mover's Distance for Few-Shot Learning [122.51237307910878]
我々は,画像領域間の最適なマッチングの新しい視点から,少数ショット画像分類法を開発した。
我々は、高密度画像表現間の構造距離を計算するために、Earth Mover's Distance (EMD) を用いている。
定式化において重要な要素の重みを生成するために,我々は相互参照機構を設計する。
論文 参考訳(メタデータ) (2020-03-15T08:13:16Z) - ADRN: Attention-based Deep Residual Network for Hyperspectral Image
Denoising [52.01041506447195]
ノイズの多いHSIからクリーンなHSIへのマッピングを学習するために,注目に基づくディープ残差ネットワークを提案する。
実験の結果,提案手法は定量的および視覚的評価において最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2020-03-04T08:36:27Z) - Hybrid Multiple Attention Network for Semantic Segmentation in Aerial
Images [24.35779077001839]
グローバルな相関関係を適応的に捉えるために,Hybrid Multiple Attention Network (HMANet) という新しいアテンションベースのフレームワークを提案する。
本稿では,機能的冗長性を低減し,自己注意機構の効率を向上させるため,単純で効果的な領域シャッフルアテンション(RSA)モジュールを提案する。
論文 参考訳(メタデータ) (2020-01-09T07:47:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。