Mono3R: Exploiting Monocular Cues for Geometric 3D Reconstruction
- URL: http://arxiv.org/abs/2504.13419v1
- Date: Fri, 18 Apr 2025 02:33:12 GMT
- Title: Mono3R: Exploiting Monocular Cues for Geometric 3D Reconstruction
- Authors: Wenyu Li, Sidun Liu, Peng Qiao, Yong Dou,
- Abstract summary: We introduce a monocular-guided refinement module that integrates monocular geometric priors into multi-view reconstruction frameworks.<n>Our method achieves substantial improvements in both mutli-view camera pose estimation and point cloud accuracy.
- Score: 11.220655907305515
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in data-driven geometric multi-view 3D reconstruction foundation models (e.g., DUSt3R) have shown remarkable performance across various 3D vision tasks, facilitated by the release of large-scale, high-quality 3D datasets. However, as we observed, constrained by their matching-based principles, the reconstruction quality of existing models suffers significant degradation in challenging regions with limited matching cues, particularly in weakly textured areas and low-light conditions. To mitigate these limitations, we propose to harness the inherent robustness of monocular geometry estimation to compensate for the inherent shortcomings of matching-based methods. Specifically, we introduce a monocular-guided refinement module that integrates monocular geometric priors into multi-view reconstruction frameworks. This integration substantially enhances the robustness of multi-view reconstruction systems, leading to high-quality feed-forward reconstructions. Comprehensive experiments across multiple benchmarks demonstrate that our method achieves substantial improvements in both mutli-view camera pose estimation and point cloud accuracy.
Related papers
- Regist3R: Incremental Registration with Stereo Foundation Model [11.220655907305515]
Multi-view 3D reconstruction has remained an essential yet challenging problem in the field of computer vision.<n>We propose Regist3R, a novel stereo foundation model tailored for efficient and scalable incremental reconstruction.<n>We evaluate Regist3R on public datasets for camera pose estimation and 3D reconstruction.
arXiv Detail & Related papers (2025-04-16T02:46:53Z) - Diffusion-Guided Gaussian Splatting for Large-Scale Unconstrained 3D Reconstruction and Novel View Synthesis [22.767866875051013]
We propose GS-Diff, a novel 3DGS framework guided by a multi-view diffusion model to address limitations of current methods.<n>By generating pseudo-observations conditioned on multi-view inputs, our method transforms under-constrained 3D reconstruction problems into well-posed ones.<n> Experiments on four benchmarks demonstrate that GS-Diff consistently outperforms state-of-the-art baselines by significant margins.
arXiv Detail & Related papers (2025-04-02T17:59:46Z) - Evolving High-Quality Rendering and Reconstruction in a Unified Framework with Contribution-Adaptive Regularization [27.509109317973817]
3D Gaussian Splatting (3DGS) has garnered significant attention for its high-quality rendering and fast inference speed.<n>Previous methods primarily focus on geometry regularization, with common approaches including primitive-based and dual-model frameworks.<n>We propose CarGS, a unified model leveraging-adaptive regularization to achieve simultaneous, high-quality surface reconstruction.
arXiv Detail & Related papers (2025-03-02T12:51:38Z) - Sparse-view Pose Estimation and Reconstruction via Analysis by Generative Synthesis [25.898616784744377]
Given a sparse set of observed views, the observations may not provide sufficient direct evidence to obtain complete and accurate 3D.<n>We propose SparseAGS, a method that adapts this analysis-by-synthesis approach by: a) including novel-view-synthesis-based generative priors in conjunction with photometric objectives to improve the quality of the inferred 3D, and b) explicitly reasoning about outliers and using a discrete search with a continuous optimization-based strategy to correct them.
arXiv Detail & Related papers (2024-12-04T18:59:24Z) - MonoGSDF: Exploring Monocular Geometric Cues for Gaussian Splatting-Guided Implicit Surface Reconstruction [84.07233691641193]
We introduce MonoGSDF, a novel method that couples primitives with a neural Signed Distance Field (SDF) for high-quality reconstruction.<n>To handle arbitrary-scale scenes, we propose a scaling strategy for robust generalization.<n>Experiments on real-world datasets outperforms prior methods while maintaining efficiency.
arXiv Detail & Related papers (2024-11-25T20:07:07Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.
Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - Single-view 3D Mesh Reconstruction for Seen and Unseen Categories [69.29406107513621]
Single-view 3D Mesh Reconstruction is a fundamental computer vision task that aims at recovering 3D shapes from single-view RGB images.
This paper tackles Single-view 3D Mesh Reconstruction, to study the model generalization on unseen categories.
We propose an end-to-end two-stage network, GenMesh, to break the category boundaries in reconstruction.
arXiv Detail & Related papers (2022-08-04T14:13:35Z) - MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface
Reconstruction [72.05649682685197]
State-of-the-art neural implicit methods allow for high-quality reconstructions of simple scenes from many input views.
This is caused primarily by the inherent ambiguity in the RGB reconstruction loss that does not provide enough constraints.
Motivated by recent advances in the area of monocular geometry prediction, we explore the utility these cues provide for improving neural implicit surface reconstruction.
arXiv Detail & Related papers (2022-06-01T17:58:15Z) - Neural 3D Reconstruction in the Wild [86.6264706256377]
We introduce a new method that enables efficient and accurate surface reconstruction from Internet photo collections.
We present a new benchmark and protocol for evaluating reconstruction performance on such in-the-wild scenes.
arXiv Detail & Related papers (2022-05-25T17:59:53Z) - Vid2Curve: Simultaneous Camera Motion Estimation and Thin Structure
Reconstruction from an RGB Video [90.93141123721713]
Thin structures, such as wire-frame sculptures, fences, cables, power lines, and tree branches, are common in the real world.
It is extremely challenging to acquire their 3D digital models using traditional image-based or depth-based reconstruction methods because thin structures often lack distinct point features and have severe self-occlusion.
We propose the first approach that simultaneously estimates camera motion and reconstructs the geometry of complex 3D thin structures in high quality from a color video captured by a handheld camera.
arXiv Detail & Related papers (2020-05-07T10:39:20Z) - Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from
a Single RGB Image [102.44347847154867]
We propose a novel formulation that allows to jointly recover the geometry of a 3D object as a set of primitives.
Our model recovers the higher level structural decomposition of various objects in the form of a binary tree of primitives.
Our experiments on the ShapeNet and D-FAUST datasets demonstrate that considering the organization of parts indeed facilitates reasoning about 3D geometry.
arXiv Detail & Related papers (2020-04-02T17:58:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.