Circular Image Deturbulence using Quasi-conformal Geometry
- URL: http://arxiv.org/abs/2504.13432v2
- Date: Mon, 21 Apr 2025 03:40:58 GMT
- Title: Circular Image Deturbulence using Quasi-conformal Geometry
- Authors: Chu Chen, Han Zhang, Lok Ming Lui,
- Abstract summary: In this paper, we introduce the Circular Quasi-Conformal Deturbulence (CQCD) framework, an unsupervised approach for removing image distortions.<n>This design ensures that the restored image remains both geometrically accurate and visually faithful while preventing the accumulation of incorrect estimations.<n> Experimental results demonstrate that CQCD not only outperforms existing state-of-the-art deturbulence methods in terms of image restoration quality but also provides highly accurate deformation field estimations.
- Score: 3.239589979987861
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The presence of inhomogeneous media between optical sensors and objects leads to distorted imaging outputs, significantly complicating downstream image-processing tasks. A key challenge in image restoration is the lack of high-quality, paired-label images required for training supervised models. In this paper, we introduce the Circular Quasi-Conformal Deturbulence (CQCD) framework, an unsupervised approach for removing image distortions through a circular architecture. This design ensures that the restored image remains both geometrically accurate and visually faithful while preventing the accumulation of incorrect estimations. The circular restoration process involves both forward and inverse mapping. To ensure the bijectivity of the estimated non-rigid deformations, computational quasi-conformal geometry theories are leveraged to regularize the mapping, enforcing its homeomorphic properties. This guarantees a well-defined transformation that preserves structural integrity and prevents unwanted artifacts. Furthermore, tight-frame blocks are integrated to encode distortion-sensitive features for precise recovery. To validate the performance of our approach, we conduct evaluations on various synthetic and real-world captured images. Experimental results demonstrate that CQCD not only outperforms existing state-of-the-art deturbulence methods in terms of image restoration quality but also provides highly accurate deformation field estimations.
Related papers
- SphereDiffusion: Spherical Geometry-Aware Distortion Resilient Diffusion Model [63.685132323224124]
Controllable spherical panoramic image generation holds substantial applicative potential across a variety of domains.
In this paper, we introduce a novel framework of SphereDiffusion to address these unique challenges.
Experiments on Structured3D dataset show that SphereDiffusion significantly improves the quality of controllable spherical image generation and relatively reduces around 35% FID on average.
arXiv Detail & Related papers (2024-03-15T06:26:46Z) - Deformation-Invariant Neural Network and Its Applications in Distorted
Image Restoration and Analysis [8.009077765403287]
Images degraded by geometric distortions pose a significant challenge to imaging and computer vision tasks such as object recognition.
Deep learning-based imaging models usually fail to give accurate performance for geometrically distorted images.
We propose the deformation-invariant neural network (DINN), a framework to address the problem of imaging tasks for geometrically distorted images.
arXiv Detail & Related papers (2023-10-04T08:01:36Z) - All-in-one Multi-degradation Image Restoration Network via Hierarchical
Degradation Representation [47.00239809958627]
We propose a novel All-in-one Multi-degradation Image Restoration Network (AMIRNet)
AMIRNet learns a degradation representation for unknown degraded images by progressively constructing a tree structure through clustering.
This tree-structured representation explicitly reflects the consistency and discrepancy of various distortions, providing a specific clue for image restoration.
arXiv Detail & Related papers (2023-08-06T04:51:41Z) - Physics-Driven Turbulence Image Restoration with Stochastic Refinement [80.79900297089176]
Image distortion by atmospheric turbulence is a critical problem in long-range optical imaging systems.
Fast and physics-grounded simulation tools have been introduced to help the deep-learning models adapt to real-world turbulence conditions.
This paper proposes the Physics-integrated Restoration Network (PiRN) to help the network to disentangle theity from the degradation and the underlying image.
arXiv Detail & Related papers (2023-07-20T05:49:21Z) - Reconstruction Distortion of Learned Image Compression with
Imperceptible Perturbations [69.25683256447044]
We introduce an attack approach designed to effectively degrade the reconstruction quality of Learned Image Compression (LIC)
We generate adversarial examples by introducing a Frobenius norm-based loss function to maximize the discrepancy between original images and reconstructed adversarial examples.
Experiments conducted on the Kodak dataset using various LIC models demonstrate effectiveness.
arXiv Detail & Related papers (2023-06-01T20:21:05Z) - RecRecNet: Rectangling Rectified Wide-Angle Images by Thin-Plate Spline
Model and DoF-based Curriculum Learning [62.86400614141706]
We propose a new learning model, i.e., Rectangling Rectification Network (RecRecNet)
Our model can flexibly warp the source structure to the target domain and achieves an end-to-end unsupervised deformation.
Experiments show the superiority of our solution over the compared methods on both quantitative and qualitative evaluations.
arXiv Detail & Related papers (2023-01-04T15:12:57Z) - Perceptual Image Restoration with High-Quality Priori and Degradation
Learning [28.93489249639681]
We show that our model performs well in measuring the similarity between restored and degraded images.
Our simultaneous restoration and enhancement framework generalizes well to real-world complicated degradation types.
arXiv Detail & Related papers (2021-03-04T13:19:50Z) - Generative and Discriminative Learning for Distorted Image Restoration [22.230017059874445]
Liquify is a technique for image editing, which can be used for image distortion.
We propose a novel generative and discriminative learning method based on deep neural networks.
arXiv Detail & Related papers (2020-11-11T14:01:29Z) - Improved anomaly detection by training an autoencoder with skip
connections on images corrupted with Stain-shaped noise [25.85927871251385]
anomaly detection relies on the reconstruction residual or, alternatively, on the reconstruction uncertainty.
We consider an autoencoder architecture with skip connections to improve the sharpness of the reconstruction.
We show that this model favors the reconstruction of clean images from arbitrary real-world images, regardless of the actual defects appearance.
arXiv Detail & Related papers (2020-08-29T13:50:49Z) - Learning to Restore a Single Face Image Degraded by Atmospheric
Turbulence using CNNs [93.72048616001064]
Images captured under such condition suffer from a combination of geometric deformation and space varying blur.
We present a deep learning-based solution to the problem of restoring a turbulence-degraded face image.
arXiv Detail & Related papers (2020-07-16T15:25:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.