Chirality-induced quantum nonreciprocity
- URL: http://arxiv.org/abs/2504.13437v2
- Date: Mon, 21 Apr 2025 14:43:28 GMT
- Title: Chirality-induced quantum nonreciprocity
- Authors: Zimo Zhang, Zhongxiao Xu, Ran Huang, Xingda Lu, Fengbo Zhang, Donghao Li, Şahin K. Özdemir, Franco Nori, Han Bao, Yanhong Xiao, Bing Chen, Hui Jing, Heng Shen,
- Abstract summary: Chirality, nonreciprocity, and quantum correlations are at the center of a wide range of intriguing effects and applications across natural sciences and emerging quantum technologies.<n>Here, we establish a chiral non-Hermitian platform with flying atoms and demonstrate chirality-induced nonreciprocal bipartite quantum correlations between two channels.<n>Our findings may pave the road for realizing one-way quantum effects, such as nonreciprocal squeezing or entanglement, with a variety of chiral devices.
- Score: 4.05145754015584
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chirality, nonreciprocity, and quantum correlations are at the center of a wide range of intriguing effects and applications across natural sciences and emerging quantum technologies. However, the direct link combining these three essential concepts has remained unknown till now. Here, we establish a chiral non-Hermitian platform with flying atoms and demonstrate chirality-induced nonreciprocal bipartite quantum correlations between two channels: Quantum correlation emerges when two spatially separated light beams of the same polarization propagate in opposite directions in the atomic cloud, and it becomes zero when they travel in the same direction. Thus, just by flipping the propagation direction of one of the beams while keeping its polarization the same as the other beam, we can create or annihilate quantum correlations between two channels. We also show that this nonreciprocal quantum correlation can be extended to multi-color sidebands with Floquet engineering. Our findings may pave the road for realizing one-way quantum effects, such as nonreciprocal squeezing or entanglement, with a variety of chiral devices, for the emerging applications of e.g., directional quantum network or nonreciprocal quantum metrology.
Related papers
- Strong and noise-tolerant entanglement in dissipative optomechanics [6.455285860188926]
We study quantum entanglement in a dissipative optomechanics, realized by a Michelson-Sagnac interferometer and a movable membrane.<n>We show that quantum entanglement generated by dissipative coupling is significantly stronger and more noise-tolerant than that generated by coherent coupling.
arXiv Detail & Related papers (2025-01-16T13:45:02Z) - Nonreciprocal Synchronization of Active Quantum Spins [0.0]
We present a model of two species of quantum spins that interact in an antagonistic nonreciprocal way.<n>We show that nonreciprocal interactions result in a nonreciprocal phase transition to time-crystalline traveling-wave states.<n>Our work lays the foundation to explore nonreciprocal interactions in active quantum matter.
arXiv Detail & Related papers (2024-06-05T15:12:34Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Quantum and classical correlations in open quantum-spin lattices via
truncated-cumulant trajectories [0.0]
We show a new method to treat open quantum-spin lattices, based on the solution of the open-system dynamics.
We validate this approach in the paradigmatic case of the phase transitions of the dissipative 2D XYZ lattice, subject to spontaneous decay.
arXiv Detail & Related papers (2022-09-27T13:23:38Z) - Space-time dual quantum Zeno effect: Interferometric engineering of open
quantum system dynamics [0.0]
We show that the superposition of multiple trajectories can result in quantum state freezing.
Non-trivial Dicke-like super(sub)radiance can be triggered without utilizing multi-atom correlations.
arXiv Detail & Related papers (2022-08-04T05:49:53Z) - Thermal entanglement and quantum coherence of a single electron in a
double quantum dot with Rashba Interaction [0.0]
We study the thermal quantum coherence in a semiconductor double quantum dot.
The main goal of this work is to provide a good understanding of the effects of temperature and several parameters in quantum coherence.
arXiv Detail & Related papers (2022-03-12T01:14:26Z) - Genuine multipartite entanglement and quantum coherence in an
electron-positron system: Relativistic covariance [117.44028458220427]
We analyze the behavior of both genuine multipartite entanglement and quantum coherence under Lorentz boosts.
A given combination of these quantum resources is shown to form a Lorentz invariant.
arXiv Detail & Related papers (2021-11-26T17:22:59Z) - Quantum fluctuations and correlations in open quantum Dicke models [0.0]
In the vicinity of ground-state phase transitions quantum correlations can display non-analytic behavior and critical scaling.
Here we consider as a paradigmatic setting the superradiant phase transition of the open quantum Dicke model.
We show that local dissipation, which cannot be treated within the commonly employed Holstein-Primakoff approximation, rather unexpectedly leads to an enhancement of collective quantum correlations.
arXiv Detail & Related papers (2021-10-25T18:15:05Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Enhancing nonclassical bosonic correlations in a Quantum Walk network
through experimental control of disorder [50.591267188664666]
We experimentally realize a controllable inhomogenous Quantum Walk dynamics.
We observe two photon states which exhibit an enhancement in the quantum correlations between two modes of the network.
arXiv Detail & Related papers (2021-02-09T10:57:00Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Quantum-Clustered Two-Photon Walks [68.8204255655161]
We demonstrate a previously unknown two-photon effect in a discrete-time quantum walk.
Two identical bosons with no mutual interactions can remain clustered together.
The two photons move in the same direction at each step due to a two-photon quantum interference phenomenon.
arXiv Detail & Related papers (2020-03-12T17:02:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.