Thermal entanglement and quantum coherence of a single electron in a
double quantum dot with Rashba Interaction
- URL: http://arxiv.org/abs/2203.06301v1
- Date: Sat, 12 Mar 2022 01:14:26 GMT
- Title: Thermal entanglement and quantum coherence of a single electron in a
double quantum dot with Rashba Interaction
- Authors: Merynilda Ferreira, Onofre Rojas, Moises Rojas
- Abstract summary: We study the thermal quantum coherence in a semiconductor double quantum dot.
The main goal of this work is to provide a good understanding of the effects of temperature and several parameters in quantum coherence.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In this work, we study the thermal quantum coherence in a semiconductor
double quantum dot. The device consists of a single electron in a double
quantum dot with Rashba spin-orbit coupling in the presence of an external
magnetic field. In our scenario, the thermal entanglement of the single
electron is driven by the charge and spin qubits, the latter controlled by
Rashba coupling. Analytical expressions are obtained for thermal concurrence
and correlated coherence using the density matrix formalism. The main goal of
this work is to provide a good understanding of the effects of temperature and
several parameters in quantum coherence. In addition, our findings show that we
can use the Rashba coupling to tune in the thermal entanglement and quantum
coherence of the system. Moreover, we focus on the role played by thermal
entanglement and correlated coherence responsible for quantum correlations. We
observe that the correlated coherence is more robust than the thermal
entanglement in all cases, so quantum algorithms based only on correlated
coherence may be stronger than those based on entanglement.
Related papers
- Divergence of thermalization rates driven by the competition between finite temperature and quantum coherence [10.256367888517563]
We observe a divergence of thermalization rates of quantum matters when the temperature approaches zero.
We find that the quantum coherence and bosonic stimulation of superfluid induces the divergence while the finite temperature and the many-body interactions are suppressing the divergence.
arXiv Detail & Related papers (2024-10-30T02:10:29Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Quantum many-body thermal machines enabled by atom-atom correlations [0.0]
We study a class of quantum many-body thermal machines whose operation is directly enabled by second-order atom-atom correlations in an ultracold atomic gas.
We show that operating these thermal machines in the intended regimes, such as a heat engine, refrigerator, thermal accelerator, or heater, would be impossible without such atom-atom correlations.
arXiv Detail & Related papers (2023-08-10T00:35:47Z) - Embedded Quantum Correlations in thermalized quantum Rabi systems [0.0]
We study how the quantum correlation depends on the coupling strength, number of qubits, and reservoir temperatures.
This work could help design more sophisticated quantum heat engines that rely on many-body systems with embedded correlations as working substances.
arXiv Detail & Related papers (2023-02-14T14:29:05Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Heat transport and rectification via quantum statistical and coherence
asymmetries [0.0]
We show that heat rectification is possible even with symmetric medium-bath couplings if the two baths differ in quantum statistics or coherence.
Our results can be significant for heat management in hybrid open quantum systems or solid-state thermal circuits.
arXiv Detail & Related papers (2022-04-14T15:59:03Z) - Implementation of a two-stroke quantum heat engine with a collisional
model [50.591267188664666]
We put forth a quantum simulation of a stroboscopic two-stroke thermal engine in the IBMQ processor.
The system consists of a quantum spin chain connected to two baths at their boundaries, prepared at different temperatures using the variational quantum thermalizer algorithm.
arXiv Detail & Related papers (2022-03-25T16:55:08Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks [48.7576911714538]
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
arXiv Detail & Related papers (2020-12-11T12:55:17Z) - Thermal entanglement and correlated coherence in two coupled double
quantum dots systems [0.0]
In this work, we investigate the thermal quantum correlations in two coupled double semiconductor charge qubits.
We study, in detail, the effects of the tunneling parameters, the Coulomb interaction and the temperature on the thermal entanglement and on the correlated coherence.
arXiv Detail & Related papers (2020-07-11T22:10:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.