論文の概要: MicroFlow: Domain-Specific Optical Flow for Ground Deformation Estimation in Seismic Events
- arxiv url: http://arxiv.org/abs/2504.13452v1
- Date: Fri, 18 Apr 2025 04:10:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-28 19:16:30.024545
- Title: MicroFlow: Domain-Specific Optical Flow for Ground Deformation Estimation in Seismic Events
- Title(参考訳): 微小流:地震イベントにおける地盤変形推定のための領域特異的光学流
- Authors: Juliette Bertrand, Sophie Giffard-Roisin, James Hollingsworth, Julien Mairal,
- Abstract要約: 特に,暗黙の相関層に依存した深層学習モデルでは,実環境下での小さな変位を推定することが困難である。
我々のモデルは、半合成地球物理学のベンチマークを広く利用し、人為的・高分解能のセンサーで捉えた現実世界のシナリオをうまく一般化する。
- 参考スコア(独自算出の注目度): 19.621315573734265
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Dense ground displacement measurements are crucial for geological studies but are impractical to collect directly. Traditionally, displacement fields are estimated using patch matching on optical satellite images from different acquisition times. While deep learning-based optical flow models are promising, their adoption in ground deformation analysis is hindered by challenges such as the absence of real ground truth, the need for sub-pixel precision, and temporal variations due to geological or anthropogenic changes. In particular, we identify that deep learning models relying on explicit correlation layers struggle at estimating small displacements in real-world conditions. Instead, we propose a model that employs iterative refinements with explicit warping layers and a correlation-independent backbone, enabling sub-pixel precision. Additionally, a non-convex variant of Total Variation regularization preserves fault-line sharpness while maintaining smoothness elsewhere. Our model significantly outperforms widely used geophysics methods on semi-synthetic benchmarks and generalizes well to challenging real-world scenarios captured by both medium- and high-resolution sensors. Project page: https://jbertrand89.github.io/microflow/.
- Abstract(参考訳): 複雑な地盤変位の測定は地質学的研究には不可欠であるが、直接の収集は不可能である。
従来,光学衛星画像のパッチマッチングを用いて,異なる取得時間から変位場を推定する。
深層学習に基づく光学フローモデルは有望であるが, 地表面の変形解析への導入は, 実地真実の欠如, サブピクセル精度の必要性, 地質学的・人為的変化による時間変動などの課題によって妨げられている。
特に,暗黙の相関層に依存した深層学習モデルでは,実環境下での小さな変位を推定することが困難である。
代わりに、明示的なワープ層と相関非依存のバックボーンを持つ反復的精細化を用いて、サブピクセル精度を実現するモデルを提案する。
さらに、トータル変分正規化の非凸変分は、他の場所での滑らかさを維持しながら、断層線の鋭さを保っている。
我々のモデルは半合成ベンチマークで広く使われている物理手法よりも優れており、中高分解能センサーと高分解能センサの両方で捉えた現実のシナリオに挑戦するのによく応用できる。
プロジェクトページ:https://jbertrand89.github.io/microflow/。
関連論文リスト
- ACMamba: Fast Unsupervised Anomaly Detection via An Asymmetrical Consensus State Space Model [51.83639270669481]
ハイパースペクトル画像(HSI)における教師なし異常検出は、背景から未知のターゲットを検出することを目的としている。
HSI研究は、HSIの高次元特性と高密度サンプリングベーストレーニングパラダイムにより、計算コストの急激さによって妨げられている。
計算コストを大幅に削減する非対称コンセンサス状態空間モデル(ACMamba)を提案する。
論文 参考訳(メタデータ) (2025-04-16T05:33:42Z) - AlignDiff: Learning Physically-Grounded Camera Alignment via Diffusion [0.5277756703318045]
本稿では,カメラ内在パラメータと外在パラメータをジェネリック・レイ・カメラ・モデルを用いて扱う新しいフレームワークを提案する。
従来のアプローチとは異なり、AlignDiffは意味論から幾何学的特徴へ焦点を移し、局所歪みのより正確なモデリングを可能にした。
実験により,提案手法は,推定光束の角誤差を8.2度,全体のキャリブレーション精度で著しく低減し,課題のある実世界のデータセットに対する既存手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2025-03-27T14:59:59Z) - One-for-More: Continual Diffusion Model for Anomaly Detection [61.12622458367425]
異常検出法は拡散モデルを用いて任意の異常画像が与えられたときの正常サンプルの生成または再構成を行う。
われわれは,拡散モデルが「重度忠実幻覚」と「破滅的な忘れ」に悩まされていることを発見した。
本研究では,安定な連続学習を実現するために勾配予測を用いた連続拡散モデルを提案する。
論文 参考訳(メタデータ) (2025-02-27T07:47:27Z) - Machine learning-enabled velocity model building with uncertainty quantification [0.41942958779358674]
移動速度モデルの正確な特徴付けは、幅広い物理応用に不可欠である。
従来の速度モデル構築法は強力であるが、逆問題の本質的な複雑さに悩まされることが多い。
本稿では,Diffusion Networkの形で生成モデリングと物理インフォームド・サマリ・統計を統合したスケーラブルな手法を提案する。
論文 参考訳(メタデータ) (2024-11-11T01:36:48Z) - Latent diffusion models for parameterization and data assimilation of facies-based geomodels [0.0]
拡散モデルは、ランダムノイズを特徴とする入力場から新しい地質学的実現を生成するために訓練される。
遅延拡散モデルは、ジオモデリングソフトウェアからのサンプルと視覚的に整合した実現を提供する。
論文 参考訳(メタデータ) (2024-06-21T01:32:03Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
本研究は,画像のマスキング領域にペンキを塗布することにより,汎用的な映像時間PAを生成する手法を提案する。
さらに,OCC設定下での現実世界の異常を検出するための単純な統合フレームワークを提案する。
提案手法は,OCC設定下での既存のPAs生成および再構築手法と同等に動作する。
論文 参考訳(メタデータ) (2023-11-27T13:14:06Z) - View Consistent Purification for Accurate Cross-View Localization [59.48131378244399]
本稿では,屋外ロボットのための微細な自己局在化手法を提案する。
提案手法は,既存のクロスビューローカライゼーション手法の限界に対処する。
これは、動的環境における知覚を増強する初めての疎視のみの手法である。
論文 参考訳(メタデータ) (2023-08-16T02:51:52Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Mitigation of Spatial Nonstationarity with Vision Transformers [1.690637178959708]
深層学習モデル予測性能に対する2種類の測地的空間非定常性の影響を示す。
本稿では,自己注意モデル(ビジョン・トランスフォーマー)を用いて,そのような影響の緩和を提案する。
論文 参考訳(メタデータ) (2022-12-09T02:16:05Z) - Strategic Geosteeering Workflow with Uncertainty Quantification and Deep
Learning: A Case Study on the Goliat Field [0.0]
本稿では,オフラインとオンラインのフェーズからなる実践的なワークフローを提案する。
オフラインフェーズには、不確実な事前ニアウェルジオモデルのトレーニングと構築が含まれている。
オンラインフェーズでは、フレキシブルな反復アンサンブルスムーズ(FlexIES)を使用して、極深電磁データのリアルタイム同化を行う。
論文 参考訳(メタデータ) (2022-10-27T15:38:26Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - SIR: Self-supervised Image Rectification via Seeing the Same Scene from
Multiple Different Lenses [82.56853587380168]
本稿では、異なるレンズからの同一シーンの歪み画像の補正結果が同一であるべきという重要な知見に基づいて、新しい自己監督画像補正法を提案する。
我々は、歪みパラメータから修正画像を生成し、再歪み画像を生成するために、微分可能なワープモジュールを利用する。
本手法は,教師付きベースライン法や代表的最先端手法と同等あるいはそれ以上の性能を実現する。
論文 参考訳(メタデータ) (2020-11-30T08:23:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。