Filter2Noise: Interpretable Self-Supervised Single-Image Denoising for Low-Dose CT with Attention-Guided Bilateral Filtering
- URL: http://arxiv.org/abs/2504.13519v1
- Date: Fri, 18 Apr 2025 07:15:27 GMT
- Title: Filter2Noise: Interpretable Self-Supervised Single-Image Denoising for Low-Dose CT with Attention-Guided Bilateral Filtering
- Authors: Yipeng Sun, Linda-Sophie Schneider, Mingxuan Gu, Siyuan Mei, Chengze Ye, Fabian Wagner, Siming Bayer, Andreas Maier,
- Abstract summary: We propose an interpretable self-supervised single-image denoising framework -- Filter2Noise (F2N)<n>Our approach introduces an Attention-Guided Bilateral Filter that adapted to each noisy input through a lightweight module.<n>On the Mayo Clinic 2016 low-dose CT dataset, F2N outperforms the leading self-supervised single-image method (ZS-N2N) by 4.5 dB9 PSNR.
- Score: 3.788107003189284
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Effective denoising is crucial in low-dose CT to enhance subtle structures and low-contrast lesions while preventing diagnostic errors. Supervised methods struggle with limited paired datasets, and self-supervised approaches often require multiple noisy images and rely on deep networks like U-Net, offering little insight into the denoising mechanism. To address these challenges, we propose an interpretable self-supervised single-image denoising framework -- Filter2Noise (F2N). Our approach introduces an Attention-Guided Bilateral Filter that adapted to each noisy input through a lightweight module that predicts spatially varying filter parameters, which can be visualized and adjusted post-training for user-controlled denoising in specific regions of interest. To enable single-image training, we introduce a novel downsampling shuffle strategy with a new self-supervised loss function that extends the concept of Noise2Noise to a single image and addresses spatially correlated noise. On the Mayo Clinic 2016 low-dose CT dataset, F2N outperforms the leading self-supervised single-image method (ZS-N2N) by 4.59 dB PSNR while improving transparency, user control, and parametric efficiency. These features provide key advantages for medical applications that require precise and interpretable noise reduction. Our code is demonstrated at https://github.com/sypsyp97/Filter2Noise.git .
Related papers
- Positive2Negative: Breaking the Information-Lossy Barrier in Self-Supervised Single Image Denoising [26.67217493971613]
Existing self-supervised image denoising paradigms rely heavily on information-lossy operations.<n>We propose a novel self-supervised single image denoising paradigm, Positive2Negative, to break the information-lossy barrier.<n>Our paradigm achieves state-of-the-art performance in self-supervised single image denoising with significant speed improvements.
arXiv Detail & Related papers (2024-12-21T03:25:01Z) - Neighboring Slice Noise2Noise: Self-Supervised Medical Image Denoising from Single Noisy Image Volume [12.077993066353294]
We propose a novel self-supervised medical image denoising method, Neighboring Slice Noise2Noise (NS-N2N)<n>NS-N2N only requires a single noisy image volume obtained from one medical imaging procedure to achieve high-quality denoising of the image volume itself.
arXiv Detail & Related papers (2024-11-16T16:24:28Z) - Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation [55.07472635587852]
Low-Light Image Enhancement (LLIE) techniques have made notable advancements in preserving image details and enhancing contrast.
These approaches encounter persistent challenges in efficiently mitigating dynamic noise and accommodating diverse low-light scenarios.
We first propose a method for estimating the noise level in low light images in a quick and accurate way.
We then devise a Learnable Illumination Interpolator (LII) to satisfy general constraints between illumination and input.
arXiv Detail & Related papers (2023-05-17T13:56:48Z) - One-Pot Multi-Frame Denoising [11.372794025435955]
We propose an unsupervised learning strategy named one-pot denoising (OPD) for multi-frame images.
OPD executes mutual supervision among all of the multiple frames, which gives learning more diversity of supervision.
In practice, our experiments demonstrate that OPD behaves as the SOTA unsupervised denoising method.
arXiv Detail & Related papers (2023-02-18T09:32:59Z) - Enhancing convolutional neural network generalizability via low-rank weight approximation [6.763245393373041]
Sufficient denoising is often an important first step for image processing.
Deep neural networks (DNNs) have been widely used for image denoising.
We introduce a new self-supervised framework for image denoising based on the Tucker low-rank tensor approximation.
arXiv Detail & Related papers (2022-09-26T14:11:05Z) - Zero-shot Blind Image Denoising via Implicit Neural Representations [77.79032012459243]
We propose an alternative denoising strategy that leverages the architectural inductive bias of implicit neural representations (INRs)
We show that our method outperforms existing zero-shot denoising methods under an extensive set of low-noise or real-noise scenarios.
arXiv Detail & Related papers (2022-04-05T12:46:36Z) - Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images [98.82804259905478]
We present Neighbor2Neighbor to train an effective image denoising model with only noisy images.
In detail, input and target used to train a network are images sub-sampled from the same noisy image.
A denoising network is trained on sub-sampled training pairs generated in the first stage, with a proposed regularizer as additional loss for better performance.
arXiv Detail & Related papers (2021-01-08T02:03:25Z) - Unpaired Learning of Deep Image Denoising [80.34135728841382]
This paper presents a two-stage scheme by incorporating self-supervised learning and knowledge distillation.
For self-supervised learning, we suggest a dilated blind-spot network (D-BSN) to learn denoising solely from real noisy images.
Experiments show that our unpaired learning method performs favorably on both synthetic noisy images and real-world noisy photographs.
arXiv Detail & Related papers (2020-08-31T16:22:40Z) - Flexible Image Denoising with Multi-layer Conditional Feature Modulation [56.018132592622706]
We present a novel flexible image enoising network (CFMNet) by equipping an U-Net backbone with conditional feature modulation (CFM) modules.
In comparison to channel-wise shifting only in the first layer, CFMNet can make better use of noise level information by deploying multiple layers of CFM.
Our CFMNet is effective in exploiting noise level information for flexible non-blind denoising, and performs favorably against the existing deep image denoising methods in terms of both quantitative metrics and visual quality.
arXiv Detail & Related papers (2020-06-24T06:00:00Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.