Compile Scene Graphs with Reinforcement Learning
- URL: http://arxiv.org/abs/2504.13617v3
- Date: Sun, 11 May 2025 21:44:14 GMT
- Title: Compile Scene Graphs with Reinforcement Learning
- Authors: Zuyao Chen, Jinlin Wu, Zhen Lei, Marc Pollefeys, Chang Wen Chen,
- Abstract summary: Next-token prediction is the fundamental principle for training large language models (LLMs)<n>We introduce R1-SGG, a multimodal LLM (M-LLM) initially trained via supervised fine-tuning (SFT) on the scene graph dataset.<n>We design a set of graph-centric rewards, including three recall-based variants -- Hard Recall, Hard Recall+Relax, and Soft Recall.
- Score: 69.36723767339001
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Next-token prediction is the fundamental principle for training large language models (LLMs), and reinforcement learning (RL) further enhances their reasoning performance. As an effective way to model language, image, video, and other modalities, the use of LLMs for end-to-end extraction of structured visual representations, such as scene graphs, remains underexplored. It requires the model to accurately produce a set of objects and relationship triplets, rather than generating text token by token. To achieve this, we introduce R1-SGG, a multimodal LLM (M-LLM) initially trained via supervised fine-tuning (SFT) on the scene graph dataset and subsequently refined using reinforcement learning to enhance its ability to generate scene graphs in an end-to-end manner. The SFT follows a conventional prompt-response paradigm, while RL requires the design of effective reward signals. We design a set of graph-centric rewards, including three recall-based variants -- Hard Recall, Hard Recall+Relax, and Soft Recall -- which evaluate semantic and spatial alignment between predictions and ground truth at the object and relation levels. A format consistency reward further ensures that outputs follow the expected structural schema. Extensive experiments on the VG150 and PSG benchmarks show that R1-SGG substantially reduces failure rates and achieves strong performance in Recall and mean Recall, surpassing traditional SGG models and existing multimodal language models. Our code is available at https://github.com/gpt4vision/R1-SGG
Related papers
- GraphRAG-R1: Graph Retrieval-Augmented Generation with Process-Constrained Reinforcement Learning [33.57411612551111]
We propose GraphRAG-R1, an adaptive GraphRAG framework by training LLMs with process-constrained outcome-based reinforcement learning (RL)<n>Our method can decompose complex problems, autonomously invoke retrieval tools, and perform effective reasoning.<n>Our framework can be flexibly integrated with various existing retrieval methods, consistently delivering performance improvements.
arXiv Detail & Related papers (2025-07-31T14:11:16Z) - Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering [75.12322966980003]
Large Language Models (LLMs) have shown strong inductive reasoning ability across various domains.<n>Most existing RAG pipelines rely on unstructured text, limiting interpretability and structured reasoning.<n>Recent studies have explored integrating knowledge graphs with LLMs for knowledge graph question answering.<n>We propose RAPL, a novel framework for efficient and effective graph retrieval in KGQA.
arXiv Detail & Related papers (2025-06-11T12:03:52Z) - Reinforcement Learning Tuning for VideoLLMs: Reward Design and Data Efficiency [56.475612147721264]
We propose a dual-reward formulation that supervises both semantic and temporal reasoning through discrete and continuous reward signals.<n>We evaluate our approach across eight representative video understanding tasks, including VideoQA, Temporal Video Grounding, and Grounded VideoQA.<n>Results underscore the importance of reward design and data selection in advancing reasoning-centric video understanding with MLLMs.
arXiv Detail & Related papers (2025-06-02T17:28:26Z) - G1: Teaching LLMs to Reason on Graphs with Reinforcement Learning [58.73279333365234]
Reinforcement Learning (RL) on synthetic graph-theoretic tasks can significantly scale graph reasoning abilities.<n>With RL on Erdos, G1 obtains substantial improvements in graph reasoning, where our finetuned 3B model even outperforms Qwen2.5-72B-Instruct (24x size)<n>Our findings offer an efficient, scalable path for building strong graph reasoners by finetuning LLMs with RL on graph-theoretic tasks.
arXiv Detail & Related papers (2025-05-24T04:33:41Z) - GoT-R1: Unleashing Reasoning Capability of MLLM for Visual Generation with Reinforcement Learning [47.592351387052545]
GoT-R1 is a framework that applies reinforcement learning to enhance semantic-spatial reasoning in visual generation.<n>We propose a dual-stage multi-dimensional reward framework that leverages MLLMs to evaluate both the reasoning process and final output.<n> Experimental results demonstrate significant improvements on T2I-CompBench benchmark.
arXiv Detail & Related papers (2025-05-22T17:59:58Z) - PRISM-0: A Predicate-Rich Scene Graph Generation Framework for Zero-Shot Open-Vocabulary Tasks [51.31903029903904]
In Scene Graphs Generation (SGG) one extracts structured representation from visual inputs in the form of objects nodes and predicates connecting them.<n> PRISM-0 is a framework for zero-shot open-vocabulary SGG that bootstraps foundation models in a bottom-up approach.<n> PRIMS-0 generates semantically meaningful graphs that improve downstream tasks such as Image Captioning and Sentence-to-Graph Retrieval.
arXiv Detail & Related papers (2025-04-01T14:29:51Z) - LLMs as Zero-shot Graph Learners: Alignment of GNN Representations with LLM Token Embeddings [7.302176015732192]
We introduce a novel framework named Token Embedding-Aligned Graph Language Model (TEA-GLM)<n>We pretrain a GNN, aligning its representations with token embeddings of an LLM.<n>We then train a linear projector that transforms the GNN's representations into a fixed number of graph token embeddings.
arXiv Detail & Related papers (2024-08-25T04:32:45Z) - Parameter-Efficient Tuning Large Language Models for Graph Representation Learning [62.26278815157628]
We introduce Graph-aware.
Efficient Fine-Tuning - GPEFT, a novel approach for efficient graph representation learning.
We use a graph neural network (GNN) to encode structural information from neighboring nodes into a graph prompt.
We validate our approach through comprehensive experiments conducted on 8 different text-rich graphs, observing an average improvement of 2% in hit@1 and Mean Reciprocal Rank (MRR) in link prediction evaluations.
arXiv Detail & Related papers (2024-04-28T18:36:59Z) - GraSAME: Injecting Token-Level Structural Information to Pretrained Language Models via Graph-guided Self-Attention Mechanism [10.573861741540853]
We propose a graph-guided self-attention mechanism, GraSAME, for pretrained language models.
GraSAME seamlessly incorporates token-level structural information into PLMs without necessitating additional alignment or concatenation efforts.
Our experiments on the graph-to-text generation task demonstrate that GraSAME outperforms baseline models and achieves results comparable to state-of-the-art (SOTA) models on WebNLG datasets.
arXiv Detail & Related papers (2024-04-10T11:03:57Z) - Chasing Fairness in Graphs: A GNN Architecture Perspective [73.43111851492593]
We propose textsfFair textsfMessage textsfPassing (FMP) designed within a unified optimization framework for graph neural networks (GNNs)
In FMP, the aggregation is first adopted to utilize neighbors' information and then the bias mitigation step explicitly pushes demographic group node presentation centers together.
Experiments on node classification tasks demonstrate that the proposed FMP outperforms several baselines in terms of fairness and accuracy on three real-world datasets.
arXiv Detail & Related papers (2023-12-19T18:00:15Z) - RLIPv2: Fast Scaling of Relational Language-Image Pre-training [53.21796397618875]
We propose RLIPv2, a fast converging model that enables the relational scaling of pre-training to large-scale pseudo-labelled scene graph data.
Asymmetric Language-Image Fusion (ALIF) facilitates earlier and deeper gated cross-modal fusion with sparsified language encoding.
RLIPv2 shows state-of-the-art performance on three benchmarks under fully-finetuning, few-shot and zero-shot settings.
arXiv Detail & Related papers (2023-08-18T07:17:09Z) - SimTeG: A Frustratingly Simple Approach Improves Textual Graph Learning [131.04781590452308]
We present SimTeG, a frustratingly Simple approach for Textual Graph learning.
We first perform supervised parameter-efficient fine-tuning (PEFT) on a pre-trained LM on the downstream task.
We then generate node embeddings using the last hidden states of finetuned LM.
arXiv Detail & Related papers (2023-08-03T07:00:04Z) - Hierarchical Memory Learning for Fine-Grained Scene Graph Generation [49.39355372599507]
This paper proposes a novel Hierarchical Memory Learning (HML) framework to learn the model from simple to complex.
After the autonomous partition of coarse and fine predicates, the model is first trained on the coarse predicates and then learns the fine predicates.
arXiv Detail & Related papers (2022-03-14T08:01:14Z) - Graph Ordering: Towards the Optimal by Learning [69.72656588714155]
Graph representation learning has achieved a remarkable success in many graph-based applications, such as node classification, prediction, and community detection.
However, for some kind of graph applications, such as graph compression and edge partition, it is very hard to reduce them to some graph representation learning tasks.
In this paper, we propose to attack the graph ordering problem behind such applications by a novel learning approach.
arXiv Detail & Related papers (2020-01-18T09:14:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.