GraphRAG-R1: Graph Retrieval-Augmented Generation with Process-Constrained Reinforcement Learning
- URL: http://arxiv.org/abs/2507.23581v1
- Date: Thu, 31 Jul 2025 14:11:16 GMT
- Title: GraphRAG-R1: Graph Retrieval-Augmented Generation with Process-Constrained Reinforcement Learning
- Authors: Chuanyue Yu, Kuo Zhao, Yuhan Li, Heng Chang, Mingjian Feng, Xiangzhe Jiang, Yufei Sun, Jia Li, Yuzhi Zhang, Jianxin Li, Ziwei Zhang,
- Abstract summary: We propose GraphRAG-R1, an adaptive GraphRAG framework by training LLMs with process-constrained outcome-based reinforcement learning (RL)<n>Our method can decompose complex problems, autonomously invoke retrieval tools, and perform effective reasoning.<n>Our framework can be flexibly integrated with various existing retrieval methods, consistently delivering performance improvements.
- Score: 33.57411612551111
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Graph Retrieval-Augmented Generation (GraphRAG) has shown great effectiveness in enhancing the reasoning abilities of LLMs by leveraging graph structures for knowledge representation and modeling complex real-world relationships. However, existing GraphRAG methods still face significant bottlenecks when handling complex problems that require multi-hop reasoning, as their query and retrieval phases are largely based on pre-defined heuristics and do not fully utilize the reasoning potentials of LLMs. To address this problem, we propose GraphRAG-R1, an adaptive GraphRAG framework by training LLMs with process-constrained outcome-based reinforcement learning (RL) to enhance the multi-hop reasoning ability. Our method can decompose complex problems, autonomously invoke retrieval tools to acquire necessary information, and perform effective reasoning. Specifically, we utilize a modified version of Group Relative Policy Optimization (GRPO) that supports rollout-with-thinking capability. Next, we design two process-constrained reward functions. To handle the shallow retrieval problem, we design a Progressive Retrieval Attenuation (PRA) reward to encourage essential retrievals. Then, to handle the over-thinking problem, we design Cost-Aware F1 (CAF) reward to balance the model performance with computational costs. We further design a phase-dependent training strategy, containing three training stages corresponding to cold start and these two rewards. Lastly, our method adopts a hybrid graph-textual retrieval to improve the reasoning capacity. Extensive experimental results demonstrate that GraphRAG-R1 boosts LLM capabilities in solving complex reasoning problems compared to state-of-the-art GraphRAG methods on both in-domain and out-of-domain datasets. Furthermore, our framework can be flexibly integrated with various existing retrieval methods, consistently delivering performance improvements.
Related papers
- GRAIL:Learning to Interact with Large Knowledge Graphs for Retrieval Augmented Reasoning [13.481673780508215]
GRAIL is a framework designed to interact with large-scale graphs for retrieval-augmented reasoning.<n>GRAIL achieves an average accuracy improvement of 21.01% and F1 improvement of 22.43% on knowledge graph question-answering datasets.
arXiv Detail & Related papers (2025-08-07T15:34:41Z) - Graph-R1: Towards Agentic GraphRAG Framework via End-to-end Reinforcement Learning [20.05893083101089]
Graph-R1 is an agentic GraphRAG framework via end-to-end reinforcement learning (RL)<n>It introduces lightweight knowledge hypergraph construction, models retrieval as a multi-turn agent-environment interaction.<n>Experiments on standard RAG datasets show that Graph-R1 outperforms traditional GraphRAG and RL-enhanced RAG methods in reasoning accuracy, retrieval efficiency, and generation quality.
arXiv Detail & Related papers (2025-07-29T15:01:26Z) - Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering [75.12322966980003]
Large Language Models (LLMs) have shown strong inductive reasoning ability across various domains.<n>Most existing RAG pipelines rely on unstructured text, limiting interpretability and structured reasoning.<n>Recent studies have explored integrating knowledge graphs with LLMs for knowledge graph question answering.<n>We propose RAPL, a novel framework for efficient and effective graph retrieval in KGQA.
arXiv Detail & Related papers (2025-06-11T12:03:52Z) - Graph Counselor: Adaptive Graph Exploration via Multi-Agent Synergy to Enhance LLM Reasoning [4.703280619961521]
GraphRAG effectively enhances external knowledge integration capabilities by explicitly modeling knowledge relationships.<n>Existing methods suffer from two inherent limitations.<n>We propose Graph Counselor, an GraphRAG method based on multi-agent collaboration.
arXiv Detail & Related papers (2025-06-04T13:31:21Z) - G1: Teaching LLMs to Reason on Graphs with Reinforcement Learning [58.73279333365234]
Reinforcement Learning (RL) on synthetic graph-theoretic tasks can significantly scale graph reasoning abilities.<n>With RL on Erdos, G1 obtains substantial improvements in graph reasoning, where our finetuned 3B model even outperforms Qwen2.5-72B-Instruct (24x size)<n>Our findings offer an efficient, scalable path for building strong graph reasoners by finetuning LLMs with RL on graph-theoretic tasks.
arXiv Detail & Related papers (2025-05-24T04:33:41Z) - Compile Scene Graphs with Reinforcement Learning [69.36723767339001]
Next-token prediction is the fundamental principle for training large language models (LLMs)<n>We introduce R1-SGG, a multimodal LLM (M-LLM) initially trained via supervised fine-tuning (SFT) on the scene graph dataset.<n>We design a set of graph-centric rewards, including three recall-based variants -- Hard Recall, Hard Recall+Relax, and Soft Recall.
arXiv Detail & Related papers (2025-04-18T10:46:22Z) - RGL: A Graph-Centric, Modular Framework for Efficient Retrieval-Augmented Generation on Graphs [58.10503898336799]
We introduce the RAG-on-Graphs Library (RGL), a modular framework that seamlessly integrates the complete RAG pipeline.<n>RGL addresses key challenges by supporting a variety of graph formats and integrating optimized implementations for essential components.<n>Our evaluations demonstrate that RGL not only accelerates the prototyping process but also enhances the performance and applicability of graph-based RAG systems.
arXiv Detail & Related papers (2025-03-25T03:21:48Z) - OpenVLThinker: Complex Vision-Language Reasoning via Iterative SFT-RL Cycles [91.88062410741833]
We introduce OpenVLThinker, one of the first open-source large vision-language models (LVLMs) to exhibit sophisticated chain-of-thought reasoning.<n>We show that OpenVLThinker-7B consistently advances performance across six benchmarks demanding mathematical and general reasoning.
arXiv Detail & Related papers (2025-03-21T17:52:43Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
This paper introduces an approach for training o1-like RAG models that retrieve and reason over relevant information step by step before generating the final answer.<n>Our proposed method, CoRAG, allows the model to dynamically reformulate the query based on the evolving state.
arXiv Detail & Related papers (2025-01-24T09:12:52Z) - Graph Structure Refinement with Energy-based Contrastive Learning [56.957793274727514]
We introduce an unsupervised method based on a joint of generative training and discriminative training to learn graph structure and representation.<n>We propose an Energy-based Contrastive Learning (ECL) guided Graph Structure Refinement (GSR) framework, denoted as ECL-GSR.<n>ECL-GSR achieves faster training with fewer samples and memories against the leading baseline, highlighting its simplicity and efficiency in downstream tasks.
arXiv Detail & Related papers (2024-12-20T04:05:09Z) - LEGO-GraphRAG: Modularizing Graph-based Retrieval-Augmented Generation for Design Space Exploration [17.514586423233872]
We propose LEGO-GraphRAG, a modular framework that enables fine-grained decomposition of the GraphRAG workflow.<n>Our framework facilitates comprehensive empirical studies of GraphRAG on large-scale real-world graphs and diverse query sets.
arXiv Detail & Related papers (2024-11-06T15:32:28Z) - Simple Is Effective: The Roles of Graphs and Large Language Models in Knowledge-Graph-Based Retrieval-Augmented Generation [9.844598565914055]
Large Language Models (LLMs) demonstrate strong reasoning abilities but face limitations such as hallucinations and outdated knowledge.<n>We introduce SubgraphRAG, extending the Knowledge Graph (KG)-based Retrieval-Augmented Generation (RAG) framework that retrieves subgraphs.<n>Our approach innovatively integrates a lightweight multilayer perceptron with a parallel triple-scoring mechanism for efficient and flexible subgraph retrieval.
arXiv Detail & Related papers (2024-10-28T04:39:32Z) - Can Graph Learning Improve Planning in LLM-based Agents? [61.47027387839096]
Task planning in language agents is emerging as an important research topic alongside the development of large language models (LLMs)
In this paper, we explore graph learning-based methods for task planning, a direction that is to the prevalent focus on prompt design.
Our interest in graph learning stems from a theoretical discovery: the biases of attention and auto-regressive loss impede LLMs' ability to effectively navigate decision-making on graphs.
arXiv Detail & Related papers (2024-05-29T14:26:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.