SupResDiffGAN a new approach for the Super-Resolution task
- URL: http://arxiv.org/abs/2504.13622v1
- Date: Fri, 18 Apr 2025 10:55:24 GMT
- Title: SupResDiffGAN a new approach for the Super-Resolution task
- Authors: Dawid Kopeć, Wojciech Kozłowski, Maciej Wizerkaniuk, Dawid Krutul, Jan Kocoń, Maciej Zięba,
- Abstract summary: SupResDiffGAN is a novel hybrid architecture that combines the strengths of Generative Adversarial Networks (GANs) and diffusion models for super-resolution tasks.<n>By leveraging latent space representations and reducing the number of diffusion steps, SupResDiffGAN achieves significantly faster inference times than other diffusion-based super-resolution models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we present SupResDiffGAN, a novel hybrid architecture that combines the strengths of Generative Adversarial Networks (GANs) and diffusion models for super-resolution tasks. By leveraging latent space representations and reducing the number of diffusion steps, SupResDiffGAN achieves significantly faster inference times than other diffusion-based super-resolution models while maintaining competitive perceptual quality. To prevent discriminator overfitting, we propose adaptive noise corruption, ensuring a stable balance between the generator and the discriminator during training. Extensive experiments on benchmark datasets show that our approach outperforms traditional diffusion models such as SR3 and I$^2$SB in efficiency and image quality. This work bridges the performance gap between diffusion- and GAN-based methods, laying the foundation for real-time applications of diffusion models in high-resolution image generation.
Related papers
- Single-Step Latent Consistency Model for Remote Sensing Image Super-Resolution [7.920423405957888]
We propose a novel single-step diffusion approach designed to enhance both efficiency and visual quality in RSISR tasks.<n>The proposed LCMSR reduces the iterative steps of traditional diffusion models from 50-1000 or more to just a single step.<n> Experimental results demonstrate that LCMSR effectively balances efficiency and performance, achieving inference times comparable to non-diffusion models.
arXiv Detail & Related papers (2025-03-25T09:56:21Z) - FAM Diffusion: Frequency and Attention Modulation for High-Resolution Image Generation with Stable Diffusion [63.609399000712905]
Inference at a scaled resolution leads to repetitive patterns and structural distortions.
We propose two simple modules that combine to solve these issues.
Our method, coined Fam diffusion, can seamlessly integrate into any latent diffusion model and requires no additional training.
arXiv Detail & Related papers (2024-11-27T17:51:44Z) - A Wavelet Diffusion GAN for Image Super-Resolution [7.986370916847687]
Diffusion models have emerged as a superior alternative to generative adversarial networks (GANs) for high-fidelity image generation.
However, their real-time feasibility is hindered by slow training and inference speeds.
This study proposes a wavelet-based conditional Diffusion GAN scheme for Single-Image Super-Resolution.
arXiv Detail & Related papers (2024-10-23T15:34:06Z) - Effective Diffusion Transformer Architecture for Image Super-Resolution [63.254644431016345]
We design an effective diffusion transformer for image super-resolution (DiT-SR)
In practice, DiT-SR leverages an overall U-shaped architecture, and adopts a uniform isotropic design for all the transformer blocks.
We analyze the limitation of the widely used AdaLN, and present a frequency-adaptive time-step conditioning module.
arXiv Detail & Related papers (2024-09-29T07:14:16Z) - Taming Diffusion Prior for Image Super-Resolution with Domain Shift SDEs [36.65594293655289]
DoSSR is a Domain Shift diffusion-based SR model that capitalizes on the generative powers of pretrained diffusion models.<n>At the core of our approach is a domain shift equation that integrates seamlessly with existing diffusion models.<n>Our proposed method achieves state-of-the-art performance on synthetic and real-world datasets, while notably requiring only 5 sampling steps.
arXiv Detail & Related papers (2024-09-26T12:16:11Z) - Does Diffusion Beat GAN in Image Super Resolution? [4.196273175812082]
In most studies, diffusion-based ISR models employ larger networks and are trained longer than the GAN baselines.
We show that a GAN-based model can achieve results comparable or superior to a diffusion-based model.
We will release the inference code and weights of our scaled GAN.
arXiv Detail & Related papers (2024-05-27T15:19:59Z) - Enhancing Hyperspectral Images via Diffusion Model and Group-Autoencoder
Super-resolution Network [29.6360974619655]
Group-Autoencoder (GAE) framework encodes high-dimensional hyperspectral data into low-dimensional latent space.
DMGASR construct highly effective HSI SR model (DMGASR)
Experimental results on both natural and remote sensing hyperspectral datasets demonstrate that the proposed method is superior to other state-of-the-art methods both visually and metrically.
arXiv Detail & Related papers (2024-02-27T07:57:28Z) - ResShift: Efficient Diffusion Model for Image Super-resolution by
Residual Shifting [70.83632337581034]
Diffusion-based image super-resolution (SR) methods are mainly limited by the low inference speed.
We propose a novel and efficient diffusion model for SR that significantly reduces the number of diffusion steps.
Our method constructs a Markov chain that transfers between the high-resolution image and the low-resolution image by shifting the residual.
arXiv Detail & Related papers (2023-07-23T15:10:02Z) - ACDMSR: Accelerated Conditional Diffusion Models for Single Image
Super-Resolution [84.73658185158222]
We propose a diffusion model-based super-resolution method called ACDMSR.
Our method adapts the standard diffusion model to perform super-resolution through a deterministic iterative denoising process.
Our approach generates more visually realistic counterparts for low-resolution images, emphasizing its effectiveness in practical scenarios.
arXiv Detail & Related papers (2023-07-03T06:49:04Z) - Semi-Implicit Denoising Diffusion Models (SIDDMs) [50.30163684539586]
Existing models such as Denoising Diffusion Probabilistic Models (DDPM) deliver high-quality, diverse samples but are slowed by an inherently high number of iterative steps.
We introduce a novel approach that tackles the problem by matching implicit and explicit factors.
We demonstrate that our proposed method obtains comparable generative performance to diffusion-based models and vastly superior results to models with a small number of sampling steps.
arXiv Detail & Related papers (2023-06-21T18:49:22Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.