論文の概要: Few-Shot Referring Video Single- and Multi-Object Segmentation via Cross-Modal Affinity with Instance Sequence Matching
- arxiv url: http://arxiv.org/abs/2504.13710v1
- Date: Fri, 18 Apr 2025 14:19:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-28 15:32:32.752331
- Title: Few-Shot Referring Video Single- and Multi-Object Segmentation via Cross-Modal Affinity with Instance Sequence Matching
- Title(参考訳): 事例系列マッチングを用いたクロスモーダル親和性によるビデオ単体・多体セグメンテーションの参照
- Authors: Heng Liu, Guanghui Li, Mingqi Gao, Xiantong Zhen, Feng Zheng, Yang Wang,
- Abstract要約: ビデオオブジェクトセグメンテーション(RVOS)の参照は、自然言語記述でガイドされたビデオ内のオブジェクトをセグメントすることを目的としている。
本稿では,トランスフォーマーベースモデルであるFS-RVOSを提案する。
実験の結果、FS-RVOSとFS-RVMOSは様々なベンチマークで最先端の手法より優れており、優れた堅牢性と精度を示している。
- 参考スコア(独自算出の注目度): 57.4215496482743
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Referring video object segmentation (RVOS) aims to segment objects in videos guided by natural language descriptions. We propose FS-RVOS, a Transformer-based model with two key components: a cross-modal affinity module and an instance sequence matching strategy, which extends FS-RVOS to multi-object segmentation (FS-RVMOS). Experiments show FS-RVOS and FS-RVMOS outperform state-of-the-art methods across diverse benchmarks, demonstrating superior robustness and accuracy.
- Abstract(参考訳): ビデオオブジェクトセグメンテーション(RVOS)の参照は、自然言語記述でガイドされたビデオ内のオブジェクトをセグメントすることを目的としている。
本稿では,FS-RVOSをマルチオブジェクトセグメンテーション(FS-RVMOS)に拡張するクロスモーダルアフィニティモジュールとインスタンスシーケンスマッチング戦略という,トランスフォーマーベースのモデルを提案する。
実験の結果、FS-RVOSとFS-RVMOSは様々なベンチマークで最先端の手法より優れており、優れた堅牢性と精度を示している。
関連論文リスト
- 4th PVUW MeViS 3rd Place Report: Sa2VA [105.88675577642204]
より強力なMLLM上でのテスト時間推定法を簡易に修正することで,MeVISのより強力な結果が得られることを示す。
特に,画像とビデオの密接な理解のための統一モデルである,最近のSa2VAを採用する。
論文 参考訳(メタデータ) (2025-04-01T07:06:47Z) - Video Object Segmentation via SAM 2: The 4th Solution for LSVOS Challenge VOS Track [28.52754012142431]
Segment Anything Model 2 (SAM2) は、画像やビデオにおける迅速な視覚的セグメンテーションを解決するための基礎モデルである。
SAM 2は、ユーザインタラクションを通じてモデルとデータを改善するデータエンジンを構築し、これまでで最大のビデオセグメンテーションデータセットを収集している。
訓練セットを微調整することなく、SAM 2はテストセットで75.79 J&Fを獲得し、第6回LSVOSチャレンジVOSトラックでは4位となった。
論文 参考訳(メタデータ) (2024-08-19T16:13:14Z) - The Second Place Solution for The 4th Large-scale Video Object
Segmentation Challenge--Track 3: Referring Video Object Segmentation [18.630453674396534]
ReferFormerは、すべてのビデオフレームで言語表現によって参照される所定のビデオでオブジェクトインスタンスをセグメントすることを目的としている。
本研究は, 循環学習率, 半教師付きアプローチ, テスト時間拡張推論など, さらなる向上策を提案する。
改良されたReferFormerはCVPR2022 Referring Youtube-VOS Challengeで2位にランクインした。
論文 参考訳(メタデータ) (2022-06-24T02:15:06Z) - Scalable Video Object Segmentation with Identification Mechanism [125.4229430216776]
本稿では,半教師付きビデオオブジェクト(VOS)のスケーラブルで効果的なマルチオブジェクトモデリングを実現する上での課題について検討する。
AOT(Associating Objects with Transformers)とAOST(Associating Objects with Scalable Transformers)の2つの革新的なアプローチを提案する。
当社のアプローチは最先端の競合に勝って,6つのベンチマークすべてにおいて,例外的な効率性とスケーラビリティを一貫して示しています。
論文 参考訳(メタデータ) (2022-03-22T03:33:27Z) - Full-Duplex Strategy for Video Object Segmentation [141.43983376262815]
Full- Strategy Network (FSNet)はビデオオブジェクトセグメンテーション(VOS)のための新しいフレームワークである
我々のFSNetは、融合復号ステージの前に、クロスモーダルな機能パス(すなわち、送信と受信)を同時に実行します。
我々のFSNetは、VOSとビデオの有能なオブジェクト検出タスクの両方において、他の最先端技術よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-08-06T14:50:50Z) - Rethinking Cross-modal Interaction from a Top-down Perspective for
Referring Video Object Segmentation [140.4291169276062]
ビデオオブジェクトセグメンテーション(RVOS)は、ビデオオブジェクトを自然言語参照のガイダンスでセグメント化することを目的としている。
以前の手法では、画像格子上の言語参照を直接グラウンド化することで、RVOSに対処するのが一般的であった。
そこで本研究では,複数のサンプルフレームから検出されたオブジェクトマスクをビデオ全体へ伝播させることにより,オブジェクトトラッカーの徹底的なセットを構築した。
次に,Transformerベースのトラックレット言語基底モジュールを提案し,インスタンスレベルの視覚的関係とモーダル間相互作用を同時に,効率的にモデル化する。
論文 参考訳(メタデータ) (2021-06-02T10:26:13Z) - Video Instance Segmentation with a Propose-Reduce Paradigm [68.59137660342326]
ビデオインスタンスセグメンテーション(VIS)は、ビデオ内の各フレームごとに定義されたクラスのすべてのインスタンスをセグメンテーションし、関連付けることを目的とする。
先行メソッドは通常、フレームまたはクリップのセグメンテーションを最初に取得し、追跡またはマッチングによって不完全な結果をマージします。
新しいパラダイムであるPropose-Reduceを提案し、入力ビデオの完全なシーケンスを1ステップで生成します。
論文 参考訳(メタデータ) (2021-03-25T10:58:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。