SLAM&Render: A Benchmark for the Intersection Between Neural Rendering, Gaussian Splatting and SLAM
- URL: http://arxiv.org/abs/2504.13713v2
- Date: Mon, 21 Apr 2025 08:33:42 GMT
- Title: SLAM&Render: A Benchmark for the Intersection Between Neural Rendering, Gaussian Splatting and SLAM
- Authors: Samuel Cerezo, Gaetano Meli, Tomás Berriel Martins, Kirill Safronov, Javier Civera,
- Abstract summary: SLAM&Render is a novel dataset designed to benchmark methods in the intersection between SLAM and view rendering.<n>It consists of 40 sequences with synchronized RGB, depth, IMU, robot kinematic data, and ground-truth pose streams.<n>By releasing robot kinematic data, the dataset also enables the assessment of novel SLAM strategies when applied to robot manipulators.
- Score: 7.328366964504612
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Models and methods originally developed for novel view synthesis and scene rendering, such as Neural Radiance Fields (NeRF) and Gaussian Splatting, are increasingly being adopted as representations in Simultaneous Localization and Mapping (SLAM). However, existing datasets fail to include the specific challenges of both fields, such as multimodality and sequentiality in SLAM or generalization across viewpoints and illumination conditions in neural rendering. To bridge this gap, we introduce SLAM&Render, a novel dataset designed to benchmark methods in the intersection between SLAM and novel view rendering. It consists of 40 sequences with synchronized RGB, depth, IMU, robot kinematic data, and ground-truth pose streams. By releasing robot kinematic data, the dataset also enables the assessment of novel SLAM strategies when applied to robot manipulators. The dataset sequences span five different setups featuring consumer and industrial objects under four different lighting conditions, with separate training and test trajectories per scene, as well as object rearrangements. Our experimental results, obtained with several baselines from the literature, validate SLAM&Render as a relevant benchmark for this emerging research area.
Related papers
- ROVER: A Multi-Season Dataset for Visual SLAM [7.296917102476635]
ROVER is a benchmark dataset for evaluating visual SLAM algorithms in diverse environmental conditions.
It covers 39 recordings across five outdoor locations, collected through all seasons and various lighting scenarios.
Results show that while stereo-inertial and RGBD configurations perform better under favorable lighting, most SLAM systems perform poorly in low-light and high-vegetation scenarios.
arXiv Detail & Related papers (2024-12-03T15:34:00Z) - BVI-RLV: A Fully Registered Dataset and Benchmarks for Low-Light Video Enhancement [56.97766265018334]
This paper introduces a low-light video dataset, consisting of 40 scenes with various motion scenarios under two distinct low-lighting conditions.
We provide fully registered ground truth data captured in normal light using a programmable motorized dolly and refine it via an image-based approach for pixel-wise frame alignment across different light levels.
Our experimental results demonstrate the significance of fully registered video pairs for low-light video enhancement (LLVE) and the comprehensive evaluation shows that the models trained with our dataset outperform those trained with the existing datasets.
arXiv Detail & Related papers (2024-07-03T22:41:49Z) - Gaussian-SLAM: Photo-realistic Dense SLAM with Gaussian Splatting [24.160436463991495]
We present a dense simultaneous localization and mapping (SLAM) method that uses 3D Gaussians as a scene representation.
Our approach enables interactive-time reconstruction and photo-realistic rendering from real-world single-camera RGBD videos.
arXiv Detail & Related papers (2023-12-06T10:47:53Z) - DNS SLAM: Dense Neural Semantic-Informed SLAM [92.39687553022605]
DNS SLAM is a novel neural RGB-D semantic SLAM approach featuring a hybrid representation.
Our method integrates multi-view geometry constraints with image-based feature extraction to improve appearance details.
Our experimental results achieve state-of-the-art performance on both synthetic data and real-world data tracking.
arXiv Detail & Related papers (2023-11-30T21:34:44Z) - Implicit Event-RGBD Neural SLAM [54.74363487009845]
Implicit neural SLAM has achieved remarkable progress recently.
Existing methods face significant challenges in non-ideal scenarios.
We propose EN-SLAM, the first event-RGBD implicit neural SLAM framework.
arXiv Detail & Related papers (2023-11-18T08:48:58Z) - Co-SLAM: Joint Coordinate and Sparse Parametric Encodings for Neural
Real-Time SLAM [14.56883275492083]
Co-SLAM is an RGB-D SLAM system based on a hybrid representation.
It performs robust camera tracking and high-fidelity surface reconstruction in real time.
arXiv Detail & Related papers (2023-04-27T17:46:45Z) - NICER-SLAM: Neural Implicit Scene Encoding for RGB SLAM [111.83168930989503]
NICER-SLAM is a dense RGB SLAM system that simultaneously optimize for camera poses and a hierarchical neural implicit map representation.
We show strong performance in dense mapping, tracking, and novel view synthesis, even competitive with recent RGB-D SLAM systems.
arXiv Detail & Related papers (2023-02-07T17:06:34Z) - ESLAM: Efficient Dense SLAM System Based on Hybrid Representation of
Signed Distance Fields [2.0625936401496237]
ESLAM reads RGB-D frames with unknown camera poses in a sequential manner and incrementally reconstructs the scene representation.
ESLAM improves the accuracy of 3D reconstruction and camera localization of state-of-the-art dense visual SLAM methods by more than 50%.
arXiv Detail & Related papers (2022-11-21T18:25:14Z) - RTMV: A Ray-Traced Multi-View Synthetic Dataset for Novel View Synthesis [104.53930611219654]
We present a large-scale synthetic dataset for novel view synthesis consisting of 300k images rendered from nearly 2000 complex scenes.
The dataset is orders of magnitude larger than existing synthetic datasets for novel view synthesis.
Using 4 distinct sources of high-quality 3D meshes, the scenes of our dataset exhibit challenging variations in camera views, lighting, shape, materials, and textures.
arXiv Detail & Related papers (2022-05-14T13:15:32Z) - NICE-SLAM: Neural Implicit Scalable Encoding for SLAM [112.6093688226293]
NICE-SLAM is a dense SLAM system that incorporates multi-level local information by introducing a hierarchical scene representation.
Compared to recent neural implicit SLAM systems, our approach is more scalable, efficient, and robust.
arXiv Detail & Related papers (2021-12-22T18:45:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.